Mechanics is the science of forces and movements. In most systems, the forces acting are related to the movements occurring, and a complete description must therefore include forces, movements, and their interactions. This is certainly true of any joint of the human skeleton when the activities of ordinary living are being performed; yet something can usefully be said about the forces and the movements separately. This Chapter will deal with the biomechanics of the knee by describing what is known of the movements and the forces, first with reference to the natural knee and secondly with reference to knee prostheses.


Cruciate Ligament Articular Surface Femoral Component Tibial Component Stance Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D., Kempson, G.E., Swanson, S.A.V.: Direct measurement of local pressures in the cadaveric human hip joint. J. Physiol. (Lond.) 278, 33 (1978)Google Scholar
  2. Andersson, G.B.J., Jessop, J., Freeman, M.A.R., Mason, R.M.: MacIntosh arthroplasty in rheumatoid arthritis. Acta Orthop. Scand. 45, 245 (1974)Google Scholar
  3. Bargren, J.H., Day, W.H., Freeman, M.A.R., Swanson, S.A.V.: Mechanical tests on the tibial components of non-hinged knee prostheses. J. Bone Joint Surg. (Br.) 60, 256 (1978)Google Scholar
  4. Blacharski, P.A., Somerset, J.H., Murray, D.G.: A three-dimensional study of the kinematics of the human knee. J. Biomech. 8 (6), 375 (1975)PubMedCrossRefGoogle Scholar
  5. Blaimont, P., Burnotte, J., Halleux, P.: Rôle des ménisques du genou dans la transmission des contraintes articulaires. Acta Orthop. Belg. 41 (Suppl. 1), 143 (1975)PubMedGoogle Scholar
  6. Boutin, P.: Arthroplastie totale de la hanche par prothèse en alumine. Orthop. Belg. 40, (5–6), 744 (1974)Google Scholar
  7. Braune, C.W., Fischer, O.: Über den Schwerpunkt des menschlichen Körpers mit Rücksicht auf die Ausrüstung des deutschen Infanteristen. Abhandl. Math. Phys. Classe königl. Sächs. Gesellschaft Wissensch. 15, 561 (1889)Google Scholar
  8. Bresler, B., Frankel, J.P.: The forces and moments in the leg during level walking. Trans. Am. Soc. Mech. Engrs. 72, 27 (1950)Google Scholar
  9. Charnley, J.: Stainless steel for femoral hip prostheses in combination with a high density polythene socket. J. Bone Joint Surg. (Br.) 53, 342 (1971)Google Scholar
  10. Charnley, J.: Biomechanical considerations in total hip prosthetic design. The hip. St. Louis: Mosby 1973Google Scholar
  11. Charnley, J.: Total hip replacement. JAMA 230, 1025–1028 (1974)Google Scholar
  12. Charnley, J.: Fracture of femoral prostheses in total hip replacement. A clinical study. Clin. Orthop. 111, 105 (1975)PubMedCrossRefGoogle Scholar
  13. Charnley, J.: The wear of plastics materials in the hip-joint. Plastics and Rubber 1, 59 (1976)Google Scholar
  14. Charnley, J., Cupic, Z.: The nine and ten year results of the low friction arthroplasty of the hip. Clin. Orthop. 95, 9–25 (1973)PubMedGoogle Scholar
  15. Charnley, J., Halley, D.K.: Rate of wear in total hip replacement. Clin. Orthop. 112, 170–179 (1975)PubMedGoogle Scholar
  16. Christiansen, T.: A combined endo- and total hip prosthesis with trunnion-bearing. Acta Chir. Scand. 140 (3), 185 (1974)PubMedGoogle Scholar
  17. Colley, J., Cameron, H.U., Freeman, M.A.R., Swanson, S.A.V.: Loosening of the femoral component in surface replacement of the knee. Arch. Orthop. Traumat. Surg. 92, 31 (1978)CrossRefGoogle Scholar
  18. Day, W.H., Swanson, S.A.V., Freeman, M.A.R.: Contact pressures in the loaded human cadaver hip. J. Bone Joint Surg. (Br.) 57, 302 (1975)Google Scholar
  19. Denham, R.A., Bishop, R.E.D.: Mechanics of the knee and problems in reconstructive surgery. J. Bone Joint Surg. (Br.) 60, 345 (1978)Google Scholar
  20. Ducheyne, P., Heymans, L., Martens, M., Aernoudt, E., de Meester, P., Mulier, J.C.: The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates. J. Biomech. 10 (11–12), 747 (1977)PubMedCrossRefGoogle Scholar
  21. Eberhart, H.D., et al.: Fundamental studies of human locomotion. Prosthetic devices research project. Berkeley, California, USA: college of engineering, University of California 1947Google Scholar
  22. Elftman, H.: The functional structure of the lower limb. In: Human limbs and their substitutes. Klopsteg, P.E., Wilson, P.D. (eds.), p. 411. New York: McGraw Hill 1954Google Scholar
  23. Frankel, V.H., Burstein, A.H., Brooks, D.B.: Biomechanics of internal derangement of the knee. J. Bone Joint Surg. (Am.) 53, 945 (1971)Google Scholar
  24. Freeman, M.A.R., Insall, J.N., Besser, W., Walker, P.S., Hallel, T.: Excision of the cruciate ligaments in total knee replacement. Clin. Orthop. 126, 209 (1977)PubMedGoogle Scholar
  25. Galante, J.O., Rostoker, W., Doyle, J.M: Failed femo¬ral stems in total hip prostheses. J. Bone Joint Surg. (Am.) 57 (2), 230 (1975)Google Scholar
  26. Griffith, M.J., Seidenstein, M.K., Williams, D., Charnley, J.: Socket wear in Charnley low friction arthroplasty of the hip. Clin. Orthop. 137, 37 (1978)PubMedGoogle Scholar
  27. Harrington, I.J.: A bioengineering analysis of force actions at the knee in normal and pathological gait. Biomed. Eng. 11 (5), 167 (1976)PubMedGoogle Scholar
  28. Heywood-Waddington, M.B.: Use of the Austin Moore prostheses for advanced osteoarthritis of the hip. J. Bone Joint Surg. (Br.) 48 (2), 236 (1966)Google Scholar
  29. Johnson, F., Waugh, W.: A method for routine clinical assessment of knee joint forces. Med. Biol. Eng. Comput. 17, 145 (1979)PubMedCrossRefGoogle Scholar
  30. Kapandji, I.A.: The physiology of the joints, Vol. II: The lower limb. p. 120. London, Edinburgh: Churchill Livingstone 1970Google Scholar
  31. Kettelkamp, D.B., Jacobs, A.W.: Tibiofemoral contact area — determination and implications. J. Bone Joint Surg. (Am.) 54 (2), 349 (1972)Google Scholar
  32. Kettelkamp, D.B., Johnson, R.J., Smidt, G.L., Chao, E.Y.S., Walker, M.: An electrogoniometric study of knee motion in normal gait. J. Bone Joint Surg. (Am.) 52 (4), 775 (1970)Google Scholar
  33. Maquet, P.G.J.: Biomechanics of the knee. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  34. Martens, M., Aernoudt, E., de Meester, P., Ducheyne, P., Mulier, J.C., de Langh, R., Kestelijn, P.: Factors in the mechanical failure of the femoral component in total hip prosthesis. Acta Orthop. Scand. 45 (5), 693 (1974)PubMedCrossRefGoogle Scholar
  35. Matthews, L.S., Sonstegard, D.A., Henke, J.A.: Load bearing characteristics of the patello-femoral joint. Acta Orthop. Scand. 48 (5), 511 (1977)PubMedCrossRefGoogle Scholar
  36. McLeod, P.C., Kettelkamp, D.B., Srinivasan, V., Henderson, O.L.: Measurements of repetitive activities of the knee. J. Biomech. 8 (6), 369 (1975)PubMedCrossRefGoogle Scholar
  37. Morrison, J.B.: Bioengineering analysis of force actions transmitted to the knee joint. Biomed. Eng. 3, 164 (1968)Google Scholar
  38. Morrison, J.B.: Function of the knee joint in various activities. Biomed. Eng. 4 (12), 573 (1969)PubMedGoogle Scholar
  39. Morrison, J.B.: Biomechanics of the knee joint in relation to normal walking. J. Biomech. 3, 51 (1970a)PubMedCrossRefGoogle Scholar
  40. Morrison, J.B.: The mechanics of muscle function in locomotion. J. Biomech. 3, 431 (1970b)PubMedCrossRefGoogle Scholar
  41. Murray, M.P.: Gait as a movement pattern. Am. J. Phys. Med. 46, 290 (1967)PubMedGoogle Scholar
  42. Nogi, J., Caldwell, J.W., Kauzlarich, J.J., Thompson, R.C.: Load testing of geometric and polycentric total knee replacements. Clin. Orthop. 114, 235 (1976)PubMedGoogle Scholar
  43. Paul, J.P.: Forces transmitted by joints in the human body. Proc. Inst. Mech. Eng. 181 (3J), 8 (1967)Google Scholar
  44. Perry, J., Antonelli, D., Ford, W.: Analysis of knee- joint forces during flexed-knee stance. J. Bone Joint Surg. (Am.) 57 (7) 961 (1975)Google Scholar
  45. Reilly, D.T., Martens, M.: Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities. Acta Orthop. Scand. 43, 126 (1972)PubMedCrossRefGoogle Scholar
  46. Rydell, N.W.: Forces acting on the femoral head pros-thesis. Acta Orthop. Scand. 37 (Suppl. 88), 1–132 (1966)PubMedGoogle Scholar
  47. Seedhom, B.B., Terayama, K.: Knee forces during the activity of getting out of a chair with and without the aid of arms. Biomed. Eng. 11 (8), 278 (1976)PubMedGoogle Scholar
  48. Shrive, N.G., O’Connor, J.J., Goodfellow, J.W.: Load- bearing in the knee joint. Clin. Orthop. 131, 279 (1978)PubMedGoogle Scholar
  49. Smidt, G.L.: Biomechanical analysis of knee flexion and extension. J. Biomech. 6 (1), 79 (1973)PubMedCrossRefGoogle Scholar
  50. Swanson, S.A.V.: Mechanical aspects of fixation. The scientific basis of joint replacement. Swanson, S.A.V., Freeman, M.A.R. (eds.), p. 130. London: Pitman Medical 1977Google Scholar
  51. Swanson, S.A.V.: The state of the art in joint replacement. Part 3: results, problems and trends. J. Med. Eng. Technol. 2, 16 (1978)PubMedCrossRefGoogle Scholar
  52. Swanson, S.A.V., Freeman, M.A.R. (eds.): The scientific basis of joint replacement. London: Pitman Medical 1977Google Scholar
  53. Trent, P.S., Walker, P.S., Wolf, B.: Ligament length patterns, strength and rotational axes of the knee joint. Clin. Orthop. 117, 263 (1976)PubMedGoogle Scholar
  54. Vernon-Roberts, B., Freeman, M.A.R.: The tissue response to total joint replacement prostheses. The scientific basis of joint replacement. Swanson, S.A.V., Freeman, M.A.R. (eds.), p. 86. London: Pitman Medical 1977Google Scholar
  55. Walker, P.S., Erkman, M.J.: The role of the menisci in force transmission across the knee. Clin. Orthop. 109, 184 (1975)PubMedCrossRefGoogle Scholar
  56. Walker, P.S., Hajek, J.V.: The load bearing area in the knee joint. J. Biomech. 5, 581 (1972)PubMedCrossRefGoogle Scholar
  57. Walker, P.S., Hsieh, H.H.: Conformity in condylar replacement knee prostheses. J. Bone Joint Surg. (Br.) 59 (2), 222 (1977)Google Scholar
  58. Weber, B.G., Stühmer, G., Semlitsch, M.: Erfahrungen mit dem Kunststoff Polyester als Komponente der Rotationstotalprothese des Hüftgelenkes. (Experience with polyester as a component of the rotation total prosthesis for the hip-joint). Z. Orthop. 112 (5), 1106 (1974)PubMedGoogle Scholar
  59. Weightman, B.: Properties of materials. The scientific basis of joint replacement. Swanson, S.A.V., Freeman, M.A.R. (eds.), p. 1. London: Pitman Medical 1977aGoogle Scholar
  60. Weightman, B.: Friction, lubrication and wear. The scientific basis of joint replacement. Swanson, S.A.V., Freeman, M.A.R. (eds.), p. 46. London: Pitman Medical 1977bGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • S. A. V. Swanson
    • 1
  1. 1.Biomechanics Unit, Department of Mechanical EngineeringImperial CollegeLondonEngland

Personalised recommendations