Pathologisch-anatomische Grundlagenforschung der respiratorischen Insuffizienz durch Schock

  • U. N. Riede
  • M. Hirschauer
  • C. Mittermayer
Conference paper
Part of the Anaesthesiologie und Intensivmedizin / Anaesthesiology and Intensive Care Medicine book series (A+I, volume 125)

Zusammenfassung

Die schockinduzierte respiratorische Insuffizienz bedeutet für den diagnostisch und therapeutisch tätigen Arzt eine Herausforderung; denn der Schock hat anerkanntermaßen eine hohe Morbiditäts- und Mortalitätsziffer (47, 48, 63). Uneinigkeit besteht allerdings darüber, wie man diese Lungenerkrankung, die sich im Verlaufe des Schockgeschehens beinahe fahrplanmäßig entwickelt, nennen soll (27, 78). In der Praxis hat sich der Begriff „Schocklunge“ eingebürgert, obschon die Schocklunge weder klinisch noch pathologisch-anatomisch exakt definiert ist. Dies kommt vor allem daher, daß die Phänomenologie sowie die formale und kausale Pathogenese dieses Krankheitsbildes je nach Arbeitsgruppe unterschiedlich aufgefaßt werden. Darüber hinaus erfährt das babylonische Bild der Schocklunge noch dadurch eine Verwirrung, daß einerseits die frühen und die späten Stadien der Schocklunge in einen Topf geworfen werden, und daß andererseits die aufgepfropften Komplikationen wie Bronchopneumonie, kardial bedingtes Lungenödem und Lungenembolie nicht von der primären Erkrankung des Lungenparenchyms abgetrennt werden (48).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ackermann, N.R., Beeber, J.R.: Release of lysosomal enzymes by alveolar mononuclear cells. Nature 247, 475–477 (1974)CrossRefGoogle Scholar
  2. 2.
    Alexander, I.G.S., Ritchie, B.C., Maloney, J.E.: Scanning electron microscopy of pulmonary alveolar capillary vessels. Thorax 28, 222–227 (1973)PubMedCrossRefGoogle Scholar
  3. 3.
    Adamson, I.Y.R., Bowden, D.H.: The type 2 cells as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab. Invest 30, 35–42 (1974)PubMedGoogle Scholar
  4. 4.
    Assimacopoulos, A., Guggenheim, R., Kapanci, Y.: Changes in alveolar capillary configuration at different levels of lung inflation in the rat. Lab. Invest. 34, 10–22 (1976)PubMedGoogle Scholar
  5. 5.
    Ayres, S.M., Müller, H., Gianelli, S., Fleming, P., Grace, W.J.: The lung in shock: Alveolarcapillary gas exchange in the shock syndrome. Amer. J. Cardiol. 26, 588–592 (1970)PubMedCrossRefGoogle Scholar
  6. 6.
    Bachofen, M., Weibel, E.R.: Basic pattern of tissue repair in human lungs following unspecific injury. Chest 65, Suppl., 14–19 (1974)Google Scholar
  7. 7.
    Bachofen, M., Weibel, E.R., Roos, B.: Postmortem fixation of human lungs for electron microscopy. Amer. Rev. Resp. Dis. 111, 247–256 (1975)PubMedGoogle Scholar
  8. 8.
    Benzer, H.: Oberflächenspannung in der Lunge und Schocklunge. Verh. Dtsch. Ges. Inn. Med. 81, 455–462 (1975)PubMedGoogle Scholar
  9. 9.
    Bignon, J., Jaubert, F., Jaurand, M.C.: Ultrastructural basis for pulmonary capillary permeability to autologous plasma proteins and to exogenous proteinic tracers. Chest 71, 294–296 (1977)PubMedGoogle Scholar
  10. 10.
    Blaisdell, F.W., Lim, R.C., Stallone, R.J.: The mechanism of pulmonary damage following traumatic shock. Surg. Gyn. Obstet. 130, 15–22 (1970)Google Scholar
  11. 11.
    Carrinton, C.B., Green, T.J.: Granular pneumocytes in early repair of diffuse alveolar injury. Arch. Intern. Med. 126, 464–465 (1970)CrossRefGoogle Scholar
  12. 12.
    Coalson, J.J., Hinshaw, L.G., Guenter, C.A.: The pulmonary ultrastructure in septic shock. Exp. molec. Path. 12, 84–103 (1970)Google Scholar
  13. 13.
    Coalson, J.J., Hinshaw, L.B., Guenter, C.A., Berrel, E.L., Greenfield, L.J.: Pathophysiologic responses of the subhuman primate in experimental septic shock. Lab. Invest. 32, 561–569 (1975)PubMedGoogle Scholar
  14. 14.
    Collan, Y., Kivilaakso, E. Kalima, T.V., Lempinen, M.: Ultrastructural changes in the gastric mucosa following hemarrhagic shock in pigs. Circulatory Shock 4, 13–25 (1977)PubMedGoogle Scholar
  15. 15.
    Connell, R.S., Swank, R.L., Webb, M.C.: The development of pulmonary ultrastructural lesions during hemorrhagic shock. J. Trauma 15, 116–129 (1975)PubMedCrossRefGoogle Scholar
  16. 16.
    De Duve, C.: In: Lysosomes in biology and pathology. Dingle, J.T., Fell, H.B. (eds.), Vol. 1, p. 3. Amsterdam, London: North Holland 1969Google Scholar
  17. 17.
    Derks, C.M., Peters, R.M.: The role of shock and fat embolus in leakage from pulmonary capillaries. Surg. Gynec. Obstet. 137, 945–948 (1973)PubMedGoogle Scholar
  18. 18.
    Douglas, M., Downs, J.B., Dannemiller, F.J., Hodges, M.R.: Acute respiratory failure and intravascular coagulation. Surg. Gynec. Obstet. 143, 555–560 (1976)PubMedGoogle Scholar
  19. 19.
    Evans, M.J., Stephens, R.J., Cabral, L.J., Freeman, G.: Cell renewal in the lungs of rats exposed to low levels of NO2. Arch. Environ. Health 24, 180–188 (1972)PubMedGoogle Scholar
  20. 20.
    Evans, M.J., Cabral, L.J., Stephens, R.J.: Renewal of alveolar epithelium in rat following exposure to NO2. Amer. J. Path. 70, 175–198 (1973)PubMedGoogle Scholar
  21. 21.
    Evans, M.J., Cabral, L.J., Stephens, R.J., Freeman, G.: Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp. molec. Path. 22, 142–150 (1975)Google Scholar
  22. 22.
    Fisher, H.: Schock und Schockbekämpfung. Münch, med. Wschr. 114, 2091–2096 (1972)Google Scholar
  23. 23.
    Fishman, A.P.: Pulmonary edema. The water-exchanging function of the lung. Circulation 46, 390–408 (1972)PubMedGoogle Scholar
  24. 24.
    Freudenberg, N., Häublein, U.: The effect of endotoxin shock in the aortic endothelium of young rats. Beitr. Path. 156, 1–15 (1975)Google Scholar
  25. 24 a.
    a. Fukuda, T., Okuma, H., Hata, N.: Epinephrine shock, its relation to plasma epinephrine level and the mechanism of its protection by glucocorticoid. Japan. J. Physiol. 17, 746–754 (1967)Google Scholar
  26. 25.
    Gard, D.L., Betz, R.D., Moore, R.D., Brooks, R.E.: Mitosis of type B alveolar cells in the early hyperplastic response to Freund’s adjuvant. Virchows Arch. B Cell Path. 23, 209–218 (1977)Google Scholar
  27. 26.
    Gaynor, E.: Increased mitotic acticity in rabbit endothelium after endotoxin. Lab. Invest. 24, 318–320 (1971)PubMedGoogle Scholar
  28. 27.
    Glaser, E.: Zum Problem der sogenannten Schocklunge. Med. Welt 26, 855–860 (1975)PubMedGoogle Scholar
  29. 28.
    Goerke, J.: Lung surfactant. Biochim. Biophys. Acta 344, 241–261 (1974)PubMedGoogle Scholar
  30. 29.
    Gonzales-Crussi, F., Boston, R.W.: The absorptive function of the neonatal lung. Lab. Invest. 26, 114–121 (1972)Google Scholar
  31. 30.
    Greenberg, S.D., Gyorkey, F., Jenkinks, D.E., Gyorkey, P.: Alveolar epithelial cells following exposure to nitric acid. Arch. Environ. Health 22, 655–662 (1971)PubMedGoogle Scholar
  32. 31.
    Hillen, G.P., Gaisford, W.D., Jensen, C.G.: Pulmonary changes in treated and untreated hemorrhagic shock. Amer. J. Surg. 122, 639–649 (1971)PubMedCrossRefGoogle Scholar
  33. 32.
    Haglund, U., Lundholm, K., Lundgren, O., Schersten, T.: Intestinal lysosomal enzyme activity in regional simulated shock: Influence of methylprednisolon and albumin. Circulatory shocks, 27–34 (1977)Google Scholar
  34. 33.
    Horwitz, D.L., Moquin, R.B., Herman, C.M.: Coagulation changes of septic shock in the subhuman primate and their relationship to hemodynamic changes. Ann. Surg. 175, 417–428 (1972)CrossRefGoogle Scholar
  35. 34.
    Inoue, S., Michel, R.P., Hogg, J.C.: Zonulae occludentes in alveolar epithelium and capillary endothelium of dog lung studied with the freeze-fracture technique. J. Ultrastruct. Res. 56, 215–225 (1976)PubMedCrossRefGoogle Scholar
  36. 35.
    Jones, R.T., Garcia, J.H., Mergner, W.J., Pendergrass, R.E., Valigorski, J.M., Trump, B.F.: Effects of shock on the pancreatic acinar cell. Arch. Path. 99, 634–644 (1975)PubMedGoogle Scholar
  37. 36.
    Kajihara, H., Hirata, S., Miyoshi, N.: Changes in blood catecholamines levels and ultrastructure of dog adrenal medullary cells during hemorrhagic shock. Virchow Arch. Abt. B Cell Path. 23, 1–6 (1977)Google Scholar
  38. 37.
    Kapanci, Y., Weibel, E.R., Kaplan, H.P., Robinson, F.R.: Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and morphometric studies. Lab. Invest. 20, 101–118 (1969)PubMedGoogle Scholar
  39. 38.
    Kapanci, Y., Assimacopoulos, A., Irle, C., Zwahlen, A., Gabbiani, G.: “Contractile interstitial cells” in pulmonary alveolar septa: A possible regulator of ventilation/perfusion ratio ? J. Cell Biol. 60, 375–392 (1974)PubMedCrossRefGoogle Scholar
  40. 39.
    Kauffman, S.L.: Kinetics of alveolar epithelial hyperplasia in lungs of mice exposed to urethane. Lab. Invest. 30, 170–175 (1974)Google Scholar
  41. 40.
    Katzenstein, A.L.A., Bloor, C.M., Liebow, A.A.: Diffuse alveolar damage — the role of oxygen, shock, and related factors. Amer. J. Path. 85, 210–222 (1976)Google Scholar
  42. 41.
    Kuhn, C., Finke, E.H.: The topography of the pulmonary alveolus. J. Ultrastruc. Res. 38, 161–175 (1972)CrossRefGoogle Scholar
  43. 42.
    Kux, M., Coalson, J.J., Massion, W.H., Guenter, C.A.: Pulmonary effects of E. coli endotoxin: role of leukocytes and platelets. Ann. Surg. 175, 26–34 (1972)Google Scholar
  44. 42 a.
    a. Lasch, H.G., Huth, K., Heene, D.L., Müller-Berghaus, G., Hörder, M.H., Janzarik, H., Mittermayer, C., Sandritter, W.: Die Klinik der Verbrauchskoagulopathie. Dtsch. Med. Wschr. 96, 715–727 (1971)Google Scholar
  45. 43.
    Lauweryns, J.M., Baert, J.H.: Alveolar clearance and the role of the pulmonary lymphatics. Amer. Rev. Resp. Dis. 115, 625–683 (1977)PubMedGoogle Scholar
  46. 44.
    Lauweryns, J.M.: The juxtaalveolar lymphatics in human adult lung. Amer. Rev. Resp. Dis. 102, 877–885 (1970)PubMedGoogle Scholar
  47. 45.
    Lillehei, R.C., Motsay, G.J., Dietzman, R.H.: The use of corticosteroids in the treatment of shock. Int. J. clin. Pharmacol. 5, 423–433 (1972)Google Scholar
  48. 46.
    Lough, J., Moore, S.: Endothelial injury induced by thrombin and thrombi. Lab. Invest. 33, 130–135 (1975)PubMedGoogle Scholar
  49. 47.
    Mittermayer, C., Sandritter, W.: Besondere Manifestationsformen des Schocks beim Menschen. Blutgerinnung, Kreislauf, Stoffwechsel. Gießener Gerinnungsgespräche. Lasch, H.G., Huth, K., Neuhof, H., (Hrsg.), S. 279–291. Stuttgart, New York: Schattauer 1971Google Scholar
  50. 48.
    Mittermayer, C., Ostendorf, P., Riede, U.N.: Pathologisch-anatomische Untersuchungen bei der respiratorischen Insuffizienz durch Schock. I. Lichtmikroskopische und biochemische Analyse. Intensivmed. 14, 252–262 (1977)Google Scholar
  51. 49.
    Movat, H.Z., Uriuhara, T., Macmorine, D.L., Burke, J.S.: A permeability factor released from leukocytes after phagocytosis of immun complexes and its possible role in the arthus reaction. Life Sei. 3, 1025–1039 (1964)CrossRefGoogle Scholar
  52. 50.
    Nash, G., Blennerhassett, J.B., Pontoppidan, H.: Pulmonary lesions associated with oxygen therapy and artificial ventilation. N. Engl. J. Med. 276, 368–374 (1967)PubMedCrossRefGoogle Scholar
  53. 51.
    Neuhof, H., Platt, D., Braehler, A., Müller, P.: Die Wirkung von Prednisolon auf Letalität, Aktivität lysosomaler Enzyme und Haemodynamik bei Endotoxinaemie. Intensivmed. im Druck (1977)Google Scholar
  54. 52.
    Ostendorf, P., Birzle, H., Vogel, W., Mittermayer, C.: Pulmonary radiographic abnormalities in shock. Radiology 115, 257 - 263 (1975)PubMedGoogle Scholar
  55. 53.
    Pingleton, W.W., Coalson, J.J., Hinshaw, L.B., Guenter, C.A.: Effects of steroid pretreatment on development of shock lung. Lab. Invest. 27, 445–456 (1972)PubMedGoogle Scholar
  56. 54.
    Pirkle, H., Carstens, P.: Pulmonary platelet aggregates associated with sudden death in man. Science 185, 1062–1063 (1974)PubMedCrossRefGoogle Scholar
  57. 55.
    Ratliff, N.B., Wilson, J.W., Hackel, D.B., Martin, A.M.: The lung in hemorrhagic shock. II. Observations in alveolar ultrastructure. Amer. J. Path. 58, 353–362 (1970 a)Google Scholar
  58. 56.
    Ratliff, N.B., Wilson, J.W., Mikat, E., Hackel, D.B.: Altered leukocytes in pulmonary vessels of dogs in hemorrhagic shock. Mircovasc. Res. 2, 241–256 (1970 b)Google Scholar
  59. 57.
    Reul, G.J., Greenberg, S.D., Lefrak, E.A., Mc Collum, W.B., Beall, A.C., Jordan, G.L.: Prevention of postraumatic pulmonary insufficiency. Arch. Surg. 106, 386–393 (1973)PubMedGoogle Scholar
  60. 58.
    Riede, U.N., Mittermayer, C., Hassenstein, J., Bensing, K.: Pathologisch-anatomische Unter¬suchungen bei der respiratorischen Insuffizienz durch Schock. II. Ultrastrukturell-morpho- metrische Befunde. Intensivmed. 14, 263–273 (1977)Google Scholar
  61. 58 a.
    a. Riede, U.N., Hassenstein, J., Costabel, U., Neuhof, H., Augustin, P., Mittermayer, C.: Pathologisch-anatomische Untersuchungen bei der respiratorischen Insuffizienz durch Schock. III. Histomorphometrische Untersuchungen der Methylprednisolon-Wirkung auf die durch Endotoxin induzierte Schocklunge. Intensivmed. 15, 119–125 (1978)Google Scholar
  62. 59.
    Ryan, S.F., Bell, A.L., Barrett, C.R.: Experimental acute alveolar injury in the dog. Amer. J. Path. 82, 353–372 (1976)PubMedGoogle Scholar
  63. 60.
    Schlag, G., Voigt, W.H., Schnells, G., Glatzl, A.: Die Ultrastruktur der menschlichen Lunge im Schock. Anaesthesist 25, 512–523 (1976)PubMedGoogle Scholar
  64. 61.
    Schlag, G., Voigt, W.H., Schnells, G., Glatzl, A.: Vergleichende Untersuchungen der Ultrastruktur von menschlicher Lunge und Skeletmuskulatur im Schock. Anaesthesist 26, 612–622 (1977)PubMedGoogle Scholar
  65. 62.
    Schneeberger, E.E.: Ultrastructure of intercellular junctions in the freeze fractured alveolar-capillary membrane of mouse lung..Chest 71, 299–300 (1977)Google Scholar
  66. 63.
    Steinbereithner, K.: Postoperative und posttraumatische Ateminsuffizienz. Chirurg 47, 171–176 (1976)PubMedGoogle Scholar
  67. 64.
    Stinson, S.F., Ryan, D.P., Hertweck, M.S., Hardy, J.D., Hwangkow, S.Y., Loosli, C.G.: Epithelial and surfactant changes in influenzal pulmonary lesions. Arch. Path. Lab. Med. 100, 147–153 (1976)PubMedGoogle Scholar
  68. 65.
    Strieder, D.J.: Physical factors in lung function. In: Disorders of the respiratory system. Kazemi, H. (ed.), Pp. 12-40. Grune & Stratton, New York, San Francisco, London: 1976Google Scholar
  69. 66.
    Strauss, R.H., Palmer, K.C., Hayes, J.A.: Acute lung injury induced by cadmium aerosol. Amer. J. Path. 84, 561–578 (1976)PubMedGoogle Scholar
  70. 67.
    Trump, B.F., Valigorsky, J.M., Jones, R.T., Mergner, W.J., Garcia, J.H., Cowley, R.A.: The application of electron microscopy and cellular biochemistry to the autopsy. Observations on cellular changes in human shock. Human Path. 6, 499–516 (1975)CrossRefGoogle Scholar
  71. 68.
    Vogel, W., Walter, F., Mittermayer, C., Böttcher, D., Zimmermann, W.E., Birzle, H.: Pulmonale Mikrothrombosierung bei Hyperkoagulabilität. In: Lungenveränderungen bei Langzeitbeatmung. Intern. Symp. in Freiburg 1971. Wiemers, K., Scholler, K.L., (Hrsg.), S. 289–298. Stuttgart: Thieme 1973Google Scholar
  72. 69.
    Ward, P.A.: Inflammation. In: Principles of pathobiology. Lavia, M.F., Hill, R.B., (eds.), Oxford University Press, (eds.), p. 96–154. New York, London, Toronto: 1971Google Scholar
  73. 70.
    Weibel, E.R.: Morphometry and lung models. In: Quantitative methods in morphology. Weibel, E.R., Ilias, H. (eds.), P. 253–268. Berlin, Heidelberg, New York: Springer, 1967Google Scholar
  74. 71.
    Weibel, E.R., Knight, B.W.A.: A morphometric study on the thickness of the pulmonary airblood barrier. J. Cell Biol. 21, 367–384 (1964)PubMedCrossRefGoogle Scholar
  75. 72.
    Weibel, E.R.: Morphometric estimation of pulmonary diffusion capacity. Resp. Physiol. 11, 54–75 (1971)CrossRefGoogle Scholar
  76. 73.
    Weibel, E.R.: Morphological basis of alveolar-capillary gas exchange. Physiol. Rev. 53, 419–495 (1973)PubMedGoogle Scholar
  77. 74.
    Weibel, E.R.: A note on differentiation and divisibility of alveolar epithelial cells. Chest 65, 10–21 Suppl. 1974Google Scholar
  78. 75.
    Weil, H.M., Shubin, H., Udhoji, N., Rossoff, L.: Effects of vasopressor agents and corticosteroid hormons in endotoxin shock. In: Shock and Hypotension. Mills, L.C., Moyer, J.H., (eds.). Grune and Stratton, 1965: New York, London: 5, p 470Google Scholar
  79. 76.
    Weissman, G.: The role of lysosomes in inflammation and diseases. Ann. Rev. Med. 18, 97–112(1967)Google Scholar
  80. 77.
    Weissman, G.: In: Lysosomes in biology and pathology. Dingle, J.T., FqJI, H.B. (eds.) Vol. 1, p. 276–298. Amsterdam, London: North-Holland Publ., 1969Google Scholar
  81. 78.
    Wiehert, P., von, Lanser, K.: Diagnostik der Schocklunge. Dtsch. med. Wschr. 102, 442–443 (1977)CrossRefGoogle Scholar
  82. 79.
    Wiehert, P., von: Therapeutische und prophylaktische Ansatzpunkte bei „Schocklunge“. Dtsch. med. Wschr. 102, 444–445 (1977)Google Scholar
  83. 80.
    Wilson, J.W.: Treatment or prevention of pulmonary cellular damage with pharmacologic doses of corticoids. Surg. 134, 675–681 (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • U. N. Riede
  • M. Hirschauer
  • C. Mittermayer

There are no affiliations available

Personalised recommendations