Skip to main content

Ganglionic Actions of Anticholinesterase Agents, Catecholamines, Neuro-Muscular Blocking Agents, and Local Anaesthetics

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 53))

Abstract

The demonstration by Feldberg and Gaddum (1934) that acetylcholine is the transmitter in sympathetic ganglia was a milestone in the development of the concept of chemical transmission. Clearly, the isolation of acetylcholine from the fluid perfusing the ganglia constitutes an important part of the evidence supporting the concept that chemical substances mediate synaptic transmission. It should be noted, however, that the recovery of acetylcholine from the perfusion stream is not possible unless an anticholinesterase agent is present in the perfusion fluid. In the absence of the enzyme inhibitor, choline appears in the perfusion fluid as a consequence of the hydrolysis of acetylcholine. Thus, the acetylcholinesterase enzymes destroy acetylcholine and, therefore, can serve to limit the biological life of the transmitter. Koelle (1963) and Zaimis (1963) give complete accounts of the earlier studies of the effects of anticholinesterase agents on ganglionic transmission and are useful reference sources for the period between the 1930s and 1960s.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, R.B., Zoller, A.: Some effects of long chain polymethylene bisonium salts on junctional transmission in the peripheral nervous system. Br. J. Pharmacol. 23, 131–150 (1964)

    CAS  Google Scholar 

  • Beddoe, F., Nicholls, P.J., Smith, H.J.: Inhibition of muscarinic receptor by dibenamine. Biochem. Pharmacol. 20, 3367–3376 (1971)

    PubMed  CAS  Google Scholar 

  • Bennett, M.R., McLachlan, E.M.: An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 657–668 (1972 a)

    CAS  Google Scholar 

  • Bennett, M.R., McLachlan, E.M.: An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 669–682 (1972 b)

    CAS  Google Scholar 

  • Birks, R.I., Macintosh, F.C.: Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39, 787–827 (1961)

    CAS  Google Scholar 

  • Bjorklund, A., Cegrell, L., Falck, B., Ritzen, M., Rosengren, E.: Dopamine-containing cells in sympathetic ganglia. Acta Physiol. Scand. 78, 334–338 (1970)

    PubMed  CAS  Google Scholar 

  • Blaber, L.C.: The mechanism of the facilitatory action of edrophonium in cat skeletal muscle. Br. J. Pharmacol. 46, 498–507 (1972)

    PubMed  CAS  Google Scholar 

  • Blaber, L.C., Christ, D.D.: The action of facilitatory drugs on the isolated tenuissimus muscle of the cat. Int. J. Neuropharmacol. 6, 473–484 (1967)

    PubMed  CAS  Google Scholar 

  • Blackman, J.G., Purves, R.D.: Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J. Physiol. (Lond.) 203, 173–178 (1969)

    CAS  Google Scholar 

  • Blackman, J.G., Ginsborg, B.L., Ray, C.: Synaptic transmission in the sympathetic ganglion of the frog. J. Physiol. (Lond.) 167, 355–373 (1963)

    CAS  Google Scholar 

  • Bornstein, J.D.: The effects of physostigmine on synaptic transmission in the inferior mesenteric ganglion of guinea-pig. J. Physiol. (Lond.) 241, 309–325 (1974)

    CAS  Google Scholar 

  • Boyd, I.A., Martin, A.R.: Spontaneous sub-threshold activity at mammalian neuromuscular junctions. J. Physiol. (Lond.) 132, 61–73 (1956)

    CAS  Google Scholar 

  • Brown, D.A., Jones, K.B., Halliwell, J.V., Quilliam, J.P.: Evidence against a presynaptic action of acetylcholine during ganglionic transmission. Nature (Lond.) 226, 958–959 (1970)

    CAS  Google Scholar 

  • Bülbring, E.: The action of adrenaline on transmission in the superior cervical ganglion. J. Physiol. (Lond.) 103, 55–67 (1944)

    Google Scholar 

  • Biilbring, E., Depierre, F.: The action of synthetic curarizing compounds on skeletal muscle and sympathetic ganglia both normal and denervated. Br. J. Pharmacol. 4, 22–28 (1949)

    Google Scholar 

  • Chang, C.C., Lee, C.Y.: Isolation of neurotoxins from the venom of Bungarus mullicinclus and their modes of neuromuscular blocking action. Arch. Int. Pharmacodyn. Ther. 144, 241–257 (1963)

    PubMed  CAS  Google Scholar 

  • Christ, D.D., Nishi, S.: Site of adrenaline blockade in the superior cervical ganglion of the rabbit. J. Physiol. (Lond.) 213, 107–117 (1971 a)

    CAS  Google Scholar 

  • Christ, D.D., Nishi, S.: Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit. Br. J. Pharmacol. 41, 331–338 (1971b)

    PubMed  CAS  Google Scholar 

  • Christensen, B.N., Martin, A.R.: Estimates of probability of transmitter release at the mammalian neuromuscular junction. J. Physiol. (Lond.) 210, 933–945 (1970) *

    CAS  Google Scholar 

  • Collier, B., Katz, H.S.: The synthesis, turnover, and release of surplus acetylcholine in a sympathetic ganglion. J. Physiol. (Lond.) 214, 537–552 (1971)

    CAS  Google Scholar 

  • Collier, B., Katz, H.S.: Acetylcholine synthesis from recaptured choline by a sympathetic ganglion. J. Physiol. (Lond.) 238, 639–655 (1974)

    CAS  Google Scholar 

  • Collier, B., Macintosh, F.C.: The source of choline for acetylcholine synthesis in a sympathetic ganglion. Can. J. Physiol. Pharmacol. 47, 127–135 (1969)

    CAS  Google Scholar 

  • Cramer, H., Johnson, D.G., Hanbauer, I., Silberstein, S.D., Kopin, I.J.: Accumulation of adenosine 3′,5′-monophosphate induced by catecholamines in the rat superior cervical ganglion in vitro. Brain Res. 53, 97–104 (1973)

    PubMed  CAS  Google Scholar 

  • Crowcroft, P.J., Jarrott, B., Ostberg, A.: Are there inhibitory mechanisms in mammalian autonomic ganglia? Proc. Aust. Physiol. Pharmacol. Soc. 2, 31–32 (1971)

    Google Scholar 

  • de Groat, W.C.: Nervous control of the urinary bladder of the cat. Brain Res. 87, 201–211 (1975)

    PubMed  Google Scholar 

  • de Groat, W.C., Saum, W.R.: Sympathetic inhibition of the urinary bladder and of pelvic ganglionic transmission in the cat. J. Physiol. (Lond.) 220, 297–314 (1972)

    Google Scholar 

  • de Groat, W.C., Volle, R.L.: The actions of the catecholamines on the transmission in the superior cervical ganglion of the cat. J. Pharmacol. Exp. Ther. 154, 1–13 (1966 a)

    PubMed  Google Scholar 

  • de Groat, W.C., Volle, R.L.: Interactions between the catecholamines and ganglionic stimulating agents in sympathetic ganglia. J. Pharmacol. Exp. Ther. 154, 200–215 (1966b)

    PubMed  Google Scholar 

  • del Castillo, J., Katz, B.: Quantal components of the end plate potential. J. Physiol. (Lond.) 124, 560–573(1954)

    Google Scholar 

  • Dijl, W. van: Neuromuscular blocking agents. In: Side effects of drugs. Meyer, L., Herxheimer, A. (eds.), Vol. VII, pp. 209–223. Amsterdam: Excerpta Medica 1972

    Google Scholar 

  • Dun, N., Nishi, S.: Effects of dopamine on the superior cervical ganglion of the rabbit. J. Physiol. (Lond.) 239, 155–164 (1974)

    CAS  Google Scholar 

  • Eccles, J.C: The nature of synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.) 103, 27–54(1944)

    CAS  Google Scholar 

  • Eccles, R.M., Libet, B.: Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. (Lond.) 157, 484–503 (1961)

    CAS  Google Scholar 

  • Elfvin, L.-G.: Ultrastructural studies on the synaptology of the inferior mesenteric ganglion of the cat. J. Ultrastruct. Res. 37, 411–425 (1971 a)

    PubMed  CAS  Google Scholar 

  • Elfvin, L.-G.: Specialized serial neuronal contacts between preganglionic end fibres. J. Ultrastruct. Res. 37, 426–431 (1971 b)

    PubMed  CAS  Google Scholar 

  • Elfvin, L.-G.: The structure and distribution of the axodendritic and dendrodendritic contacts. J. Ultrastruct. Res. 37, 432–448 (1971 c)

    PubMed  CAS  Google Scholar 

  • Elmqvist, D., Quastel, D.M.S.: A quantitative study of end plate potentials in isolated human muscle. J. Physiol. (Lond.) 178, 505–529 (1965)

    CAS  Google Scholar 

  • Feldberg, W., Gaddum, J.H.: The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. (Lond.) 81, 305–319 (1934)

    CAS  Google Scholar 

  • Greengard, P., McAfee, D.A., Kebabian, J.W.: On the mechanism of action of cyclic AMP and its role in synaptic transmission. In: Advances in cyclic nucleotide research. Greengard, P., Robinson, G.A. (eds.), pp. 337–355. New York: Raven Press 1972

    Google Scholar 

  • Grob, D.: Neuromuscular blocking drugs. In: Physiological pharmacology. Root, W.S., Hofman, F.G. (eds.), Vol. III/C, pp. 389–460. New York: Academic Press 1967

    Google Scholar 

  • Guyton, A.C., Reeder, R.C.: Quantitative studies on the autonomic actions of curare. J. Pharmacol. Exp. Ther. 98, 188–194 (1950)

    PubMed  CAS  Google Scholar 

  • Haefely, W.E.: Effects of catecholamines in the cat superior cervical ganglion and their postulated role as physiological modulators of ganglionic transmission. In: Progress in brain research, mechanisms of synaptic transmission. Akert, K., Waser, P.G. (eds.), pp. 61–72. Amsterdam: Elsevier 1969

    Google Scholar 

  • Halasz, P., Mechler, F., Feher, O., Damjanovich, S.: The effect of SH-inhibitors on ganglionic transmission in the superior cervical ganglion of the cat. Acta Physiol. Hung. 18, 47–55 (1960)

    CAS  Google Scholar 

  • Hamberger, B., Norberg, K.-A.: Adrenergic synaptic terminals and nerve cells in bladder ganglia of the cat. Int. J. Neuropharmacol. 4, 41–45 (1965)

    PubMed  CAS  Google Scholar 

  • Hancock, J.C., Volle, R.L.: Cholinoceptive sites in the rat superior cervical ganglion. Arch. Int. Pharmacodyn. 184, 111–120 (1970)

    PubMed  CAS  Google Scholar 

  • Harvey, A.M.: The action of procaine on neuromuscular transmission. Bull. Johns Hopkins Hosp. 65, 223–238 (1939)

    CAS  Google Scholar 

  • Hilton, J.G.: The pressor response to neostigmine after ganglionic blockade. J. Pharmacol. Exp. Ther. 132, 23–28 (1961)

    PubMed  CAS  Google Scholar 

  • Hirst, G.D.S., McKirdy, H.C.: Presynaptic inhibition at mammalian peripheral synapse? Nature (Lond.) 250, 430–431 (1974)

    CAS  Google Scholar 

  • Holaday, D.A., Kamijo, K., Koelle, G.B.: Facilitation of ganglionic transmission following inhibition of Cholinesterase by DFP. J. Pharmacol. Exp. Ther. 111, 241–254 (1954)

    PubMed  CAS  Google Scholar 

  • Jacobowitz, D.: Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia. Fed. Proc. 29, 1929–1944 (1970)

    PubMed  CAS  Google Scholar 

  • Kalix, P., McAfee, D.A., Schorderet, M., Greengard, P.: Pharmacological analysis of synaptically mediated increase in cyclic adenosine monophosphate in a rabbit superior cervical ganglion. J. Pharmacol. Exp. Ther. 188, 676–687 (1974)

    PubMed  CAS  Google Scholar 

  • Kayaalp, S.O., Mclsaac, R.J.: Effects of the adrenergic receptor blocking agents on the ganglionic transmission. Eur. J. Pharmacol. 7, 264–269 (1969)

    PubMed  CAS  Google Scholar 

  • Kebabian, J.W., Greengard, P.: Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 74, 1346–1349 (1971)

    Google Scholar 

  • Kebabian, J.W., Bloom, F.E., Steiner, A.L., Greengard, P.: Neurotransmitters increase cyclic nucleotides in postganglionic neurons: immunocytochemical demonstration. Science 190, 157–159 (1975a)

    PubMed  CAS  Google Scholar 

  • Kebabian, J.W., Steiner, A.L., Greengard, P.: Muscarinic cholinergic regulation of cyclic guano-sine 3′,5′-monophosphate in autonomic ganglia: possible role in synaptic transmission. J. Pharmacol. Exp. Ther. 193, 474–488 (1975b)

    PubMed  CAS  Google Scholar 

  • Kharkevich, D. A.: Effects of the ganglion-blocking agents, Barbamyl and novocain on the development of post-activation facilitation in sympathetic ganglia. Farmakol. Toksikol. 8, 493–499 (1959) (Russ.)

    Google Scholar 

  • Kharkevich, D.A.: Effects of ganglion-blocking substances on the rate of conduction of nerve excitation in sympathetic ganglia. Byull. Eksp. Biol. Med. 3, 61–64 (1960a) (Russ.)

    Google Scholar 

  • Kharkevich, D.A.: Effects of ganglion-blocking substances on the after discharges. Byull. Eksp. Biol. Med. 6, 62–66 (1960 b) (Russ.)

    Google Scholar 

  • Kharkevich, D.A.: Ganglion-blocking mechanism of novocain. Fiziol. Zh. S.S.S.R. 8, 960–966 (1962a) (Russ.)

    Google Scholar 

  • Kharkevich, D.A.: Gánglionic agents. Moskva: Medgiz 1962b (Russ.)

    Google Scholar 

  • Kharkevich, D.A.: Ganglion-blocking and ganglion-stimulating agents. Oxford: Pergamon Press 1967 (translated from Russian edition, 1962)

    Google Scholar 

  • Kharkevich, D.A, Tishchenko, M.I.: Effect of novocain on pessimal inhibition in different links of the reflex arc. Byull. Eksp. Biol. Med. 10, 72–77 (1957) (Russ.)

    Google Scholar 

  • Kobayashi, H., Libet, B.: Actions of noradrenaline and acetylcholine on sympathetic ganglion cells. J. Physiol. (Lond.) 208, 353–372 (1970)

    CAS  Google Scholar 

  • Koelle, G.B.: Cytological distributions and physiological functions of cholinesterases. In: Choli-nesterases and anticholinesterase agents. Koelle, G.B. (ed.), pp. 187–298. Berlin, Heidelberg, New York: Springer 1963

    Google Scholar 

  • Koelle, G.B., Davis, R., Koelle, W.A., Smyrl, E.G., Fine, A.V.: The electron microscopic localisation of acetylcholinesterase and pseudoCholinesterase in autonomic ganglia. In: Cholinergic mechanisms. Waser, P.G. (ed.), pp. 251–255. New York: Raven Press 1975

    Google Scholar 

  • Koelle, W.A., Koelle, G.B.: The localisation of external or functional acetylcholinesterase at the synapses of autonomic ganglia. J. Pharmacol. Exp. Ther. 126, 1–8 (1959)

    PubMed  CAS  Google Scholar 

  • Koketsu, K., Minota, S.: The direct action of adrenaline on the action potentials of bullfrog’s (Rana catesbeiana) sympathetic ganglion cells. Experientia 31, 822–823 (1975)

    PubMed  CAS  Google Scholar 

  • Komalahiranya, A., Volle, R.L.: Actions of inorganic ions and veratrine on asynchronous postganglionic discharge in sympathetic ganglia treated with diisopropyl-phosphorofluoridate (DFP). J. Pharmacol. Exp. Ther. 138, 57–65 (1962)

    PubMed  CAS  Google Scholar 

  • Komalahiranya, A., Volle, R.L.: Alterations of transmission in sympathetic ganglia treated with a sulfhydryl group inhibitor, N-ethyl-maleimide (NEM). J. Pharmacol. Exp. Ther. 139, 304–311(1963)

    PubMed  CAS  Google Scholar 

  • Kosterlitz, H.W., Lees, G.M., Wallis, D.I.: Resting and action potentials recorded by the sucrose-gap method in the superior cervical ganglion of the rabbit. J. Physiol. (Lond.) 195, 39–53 (1968)

    CAS  Google Scholar 

  • Krstic, M.K.: The action of isoprenaline on the superior cervical ganglion of the cat. Neuropharmacology 10, 643–647 (1971)

    PubMed  CAS  Google Scholar 

  • Kuno, M.: Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol.Rev. 51, 647–678 (1971)

    PubMed  CAS  Google Scholar 

  • Laverty, R., Sharman, D.F.: The estimation of small quantities of 3,4-dihydroxyphen-ylethylamine in tissues. Br. J. Pharmacol. 24, 538–548 (1965)

    CAS  Google Scholar 

  • Libet, B.: Generation of slow inhibitory and excitatory postsynaptic potentials. Fed. Proc. 29, 1945–1956 (1970)

    PubMed  CAS  Google Scholar 

  • Libet, B., Kobayashi, H.: Adrenergic mediation of slow inhibitory postsynaptic potential in sympathetic ganglia of the frog. J. Neurophysiol. 37, 805–814 (1974)

    PubMed  CAS  Google Scholar 

  • Libet, B., Tosaka, T.: Dopamine as a synaptic transmitter and modulator in sympathetic ganglia: a different mode of synaptic action. Proc. Natl. Acad. Sci. USA 67, 667–673 (1970)

    PubMed  CAS  Google Scholar 

  • Long, J.P., Eckstein, J.W.: Ganglionic actions of neostigmine methylsulfate. J. Pharmacol. Exp. Ther. 133, 216–222 (1961)

    PubMed  CAS  Google Scholar 

  • Lundberg, A.: Adrenaline and transmission in the sympathetic ganglion of the cat. Acta Physiol. Scand. 26, 252–263 (1952)

    PubMed  CAS  Google Scholar 

  • Marrazzi, A.S.: Electrical studies on the pharmacology of autonomic synapses. II. The action of a sympathomimetic drug (epinephrine) on sympathetic ganglia. J. Pharmacol. 65, 395–404 (1939)

    CAS  Google Scholar 

  • Mason, D.F.J.: A ganglion stimulating action of neostigmine. Br. J. Pharmacol. 18, 76–86 (1962a)

    CAS  Google Scholar 

  • Mason, D.F.J.: Depolarising action of neostigmine at an autonomic ganglion. Br. J. Pharmacol. 18, 572–587 (1962 b)

    CAS  Google Scholar 

  • Matthews, E.K.: The effects of choline and other factors on the release of acetylcholine from the stimulated perfused superior cervical ganglion of the cat. Br. J. Pharmacol. 21, 244–249 (1963)

    CAS  Google Scholar 

  • Matthews, M., Raisman, G.: The ultrastructure and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion. J. Anat. 105, 255–282 (1969)

    PubMed  CAS  Google Scholar 

  • Matthews, R.J.: The effect of epinephrine, levarterenol, and diisoproterenol on transmission in the superior cervical ganglion of the cat. J. Pharmacol. Exp. Ther. 116, 433–443 (1956)

    PubMed  CAS  Google Scholar 

  • McAfee, D.A., Greengard, P.: Adenosine 3′,5′-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science 178, 310–312 (1972)

    PubMed  CAS  Google Scholar 

  • McAfee, D.A., Schorderet, M., Greengard, P.: Adenosine 3′,5′-monophosphate in nervous tissue: increase associated with synaptic transmission. Science 171, 1156–1158 (1971)

    PubMed  CAS  Google Scholar 

  • Mclsaac, R.J.: Ganglionic blocking properties of epinephrine and related amines. Int. J. Neuro-pharmacol. 5, 15–26 (1966)

    Google Scholar 

  • Mclsaac, R.J., Koelle, G.B.: Comparison of the effects of inhibition of external, internal, and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. Exp. Ther. 126, 8–20 (1959)

    Google Scholar 

  • McKinstry, D.N., Koelle, G.B.: Acetylcholine release from the cat superior cervical ganglion by carbachol. J. Pharmacol. Exp. Ther. 157, 319–327 (1967)

    PubMed  CAS  Google Scholar 

  • McKinstry, D.N., Koenig, E., Koelle, W.A., Koelle, G.B.: The release of acetylcholine from a sympathetic ganglion by carbachol. Relationship to the functional significance of the localisation of acetylcholinesterase. Can. J. Biochem. Physiol. 41, 2599–2609 (1963)

    PubMed  CAS  Google Scholar 

  • Nakamura, M., Koketsu, K.: The effect of adrenaline on sympathetic ganglion cells of bullfrog. Life Sci. 11, 1165–1173 (1972)

    CAS  Google Scholar 

  • Nilson, R., Volle, R.L.: Blockade by cadmium (Cd++) of transmitter release at the frog neuromuscular junction. Fed. Proc. 35, 696 (1976)

    Google Scholar 

  • Nishi, S., Koketsu, K.: Origin of ganglionic inhibitory postsynaptic potential. Life Sci. 6, 2049–2056 (1967)

    PubMed  CAS  Google Scholar 

  • Nishi, S., Koketsu, K.: Analysis of slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion. J. Neurophysiol. 31, 717–728 (1968)

    PubMed  CAS  Google Scholar 

  • Nishi, S., North, F.A.: Intracellular recording from myenteric plexus of the guinea-pig ileum. J. Physiol. (Lond.) 231, 471–491 (1973)

    CAS  Google Scholar 

  • Ostberg, A.: Granule-containing cells of the inferior mesenteric ganglion. Proc. Aust. Phys. Pharmacol. Soc. 1, 1 (1970)

    Google Scholar 

  • Ogston, A.G.: Removal of acetylcholine from a limited volume by diffusion. J. Physiol. (Lond.) 128, 222–223(1955)

    CAS  Google Scholar 

  • Otten, U., Mueller, R.A., Oesch, F., Thoenen, H.: Location of an isoproterenol responsive cyclic AMP pool in adrenergic nerve cell bodies and its relationship to tyrosine 3-monooxygenase induction. Proc. Natl. Acad. Sci. USA 71, 2217–2221 (1974)

    PubMed  CAS  Google Scholar 

  • Pardo, E.G., Cato, J., Gigon, E., Alonso-de-Florida, F.: Influence of several adrenergic drugs on synaptic transmission through the superior cervical and the ciliary ganglia of the cat. J. Pharmacol. Exp. Ther. 139, 296–303 (1963)

    PubMed  CAS  Google Scholar 

  • Paton, W.D.M.: Pharmacology of curare and curarising substances. J. Pharm. Pharmacol. 1, 273–286 (1949)

    PubMed  CAS  Google Scholar 

  • Paton, W.D.M., Thompson, J. W.: The mechanism of action of adrenaline on the superior cervical ganglion of the cat. Abstr. XIX Int. Physiol. Congress 664–665 (1953)

    Google Scholar 

  • Perry, W.L.M.: Acetylcholine release in the cat’s superior cervical ganglion. J. Physiol. (Lond.) 119, 439–454(1953)

    CAS  Google Scholar 

  • Randall, L.O., Jampolsky, L.M.: Pharmacology of drugs affecting skeletal muscle. Am. J. Phys. Med. 32, 102–105 (1953)

    PubMed  CAS  Google Scholar 

  • Rybolovlev, S.R.: Curare-like action of Ditylin (di-acetylcholine). Farmakol. Toksikol. 6, 30–38 (1952) (Russ.)

    Google Scholar 

  • Sacchi, O., Perri, W.: Quantal release of acetylcholine from the nerve endings of the guinea pig superior cervical ganglion. Pflügers Arch. 329, 207–219 (1971)

    PubMed  CAS  Google Scholar 

  • Takeshige, C., Volle, R.L.: Cholinoceptive sites in denervated sympathetic ganglia. J. Pharmacol. Exp. Ther. 141, 206–213 (1963a)

    PubMed  CAS  Google Scholar 

  • Takeshige, C., Volle, R.L.: Asychronous postganglionic firing from the cat superior cervical sympathetic ganglion treated with neostigmine. Br. J. Pharmacol. 20, 214–220 (1963 b)

    CAS  Google Scholar 

  • Takeshige, C., Volle, R.L.: Bimodal response of sympathetic ganglia to acetylcholine following eserine or repetitive preganglionic stimulation. J. Pharmacol. Exp. Ther. 138, 66–73 (1963 c)

    Google Scholar 

  • Takeshige, C., Pappano, A.J., de Groat, W.C., Volle, R.L.: Ganglionic blockade produced in sympathetic ganglia by cholinomimetic drugs. J. Pharmacol. Exp. Ther. 141, 333–342 (1963)

    PubMed  CAS  Google Scholar 

  • Volle, R.L.: The responses to ganglionic stimulating and blocking drugs of cell groups within a sympathetic ganglion. J. Pharmacol. Exp. Ther. 135, 54–71 (1962 a)

    PubMed  CAS  Google Scholar 

  • Volle, R.L.: The actions of several ganglion blocking agents on the postganglionic discharge induced by diisopropyl phosphorofluoridate (DFP) in sympathetic ganglia. J. Pharmacol. Exp. Ther. 135, 45–53 (1962 b)

    PubMed  CAS  Google Scholar 

  • Volle, R.L.: Modification by drugs of synaptic mechanisms in autonomic ganglia. Pharmacol. Rev. 18, 839–869 (1966)

    CAS  Google Scholar 

  • Volle, R.L.: Cellular pharmacology of autonomic ganglia. In: Cellular pharmacology of excitable tissues. Narahashi, T. (ed.), pp. 89–140. Springfield: Charles C Thomas 1975

    Google Scholar 

  • Volle, R.L., Koelle, G.B.: The physiological role of AChE in sympathetic ganglia. J. Pharmacol. Exp. Ther. 133, 223–240 (1961)

    PubMed  CAS  Google Scholar 

  • Volle, R.L., Koelle, G.B.: Ganglionic stimulating and blocking agents. In: The pharmacological basis of therapeutics, 5 th Ed. Goodman, L.S., Gilman, A. (eds.), pp. 565–574. New York: The Macmillan Company 1975

    Google Scholar 

  • Weight, F.F., Padjen, A.: Slow synaptic inhibition: evidence for synaptic inactivation of sodium conductance in sympathetic ganglion cells. Brain Res. 55, 219–224 (1973 a)

    PubMed  CAS  Google Scholar 

  • Weight, F.F., Padjen, A.: Acetylcholine and slow synpatic inhibition in frog sympathetic ganglion cells. Brain Res. 55, 225–228 (1973 b)

    PubMed  CAS  Google Scholar 

  • Weir, M.C.L., McLennan, H.: The action of catecholamines in sympathetic ganglia. Can. J. Biochem. 41, 2627–2636 (1963)

    PubMed  CAS  Google Scholar 

  • Williams, T.H., Palay, S.L.: Ultrastructure of the small neurons in the superior cervical ganglion. Brain Res. 15, 17–34(1969)

    PubMed  CAS  Google Scholar 

  • Williams, T.H., Black, Jr, A.C., Chiba, T., Bhalla, R.C.: Morphology and biochemistry of small, intensely fluorescent cells of sympathetic ganglia. Nature (Lond.) 256, 315–317 (1975)

    CAS  Google Scholar 

  • Zaimis, E.: Actions at autonomic ganglia. In: Cholinesterases and anticholinesterase agents. Koelle, G.B. (ed.), pp. 530–569. Berlin, Heidelberg, New York: Springer 1963

    Google Scholar 

  • Zipf, H.F., Dittmann, E.Ch.: General pharmacological effects of local anaesthetics. In: Local anaesthetics. Lechat, P. (ed.), pp 191–238. Oxford: Pergamon Press 1972

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volle, R.L. (1980). Ganglionic Actions of Anticholinesterase Agents, Catecholamines, Neuro-Muscular Blocking Agents, and Local Anaesthetics. In: Kharkevich, D.A. (eds) Pharmacology of Ganglionic Transmission. Handbook of Experimental Pharmacology, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67397-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67397-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67399-3

  • Online ISBN: 978-3-642-67397-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics