Der pulmonale, transvaskuläre und transalveoläre Flüssigkeits- und Proteintransport bei normaler und gestörter Lungenfunktion

  • St. Necek
Conference paper
Part of the Klinische Anästhesiologie und Intensivtherapie book series (KAI, volume 20)

Zusammenfassung

Die dreischichtige alveolo-kapilläre Membran ist in ihrer Funktion gleichzeitig als Kontaktmembran für die Gase und als Barriere für die Flüssigkeiten des Körpers zu sehen. Die Dicke von Endo- und Epithel beträgt dabei in den zytoplasmatischen Bereichen nur 0,1 – 0,5 µm (17).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    BRIGHAM, K. L.: Lung edema due to increased vascular permeability. In: Lung water and solute exchange (ed. N. C. Staub). Lung Biol, in Health and Dis., vol. 7. New York, Basel: Marcel Dekker 1978Google Scholar
  2. 2.
    CASLEY-SMITH, J. R.: The role of the endothelial intercellular junctions in the functioning of initial lymphatics. Angiologia 9, 106 (1972)Google Scholar
  3. 3.
    CHINARD, F. P.: Permeability of pulmonary blood-gas barrier. In: Capillary permeability (eds. C. CRONE, N. A. LASSEN). Copenhagen: Munksgaard 1970Google Scholar
  4. 4.
    EAGAN, E. A.: Effect of lung inflation on alveolar permeability to solutes. In: Lung liquids (ed. CIBA FOUND.). Elsevier Excerpta medica, North Holland 1976Google Scholar
  5. 5.
    EFFROS, R. M.: Small solutes and water. In: Lung water and solute exchange (ed. N. C. STAUB). Lung Biol, in Health and Dis., vol. 7. New York, Basel: Marcel Dekker 1978Google Scholar
  6. 6.
    EISENBERG, D., KAUZMANN, D.: The structure and properties of water. New York: Oxford Univ. Press 1969Google Scholar
  7. 7.
    GIL, J.: Lung interstitium, vascular and alveolar membranes. In: Lung water and solute exchange (ed. N. C. Staub). Lung Biol, in Health and Dis., vol. 7. New York, Basel: Marcel Dekker 1978Google Scholar
  8. 8.
    HALMAGYI, D. F. J.: Role of lymphatics in the genesis of shock lung: a hypothesis. In: Lung water and solute exchange (ed. N. C. Staub). Lung Biol, in Health and Dis., vol. 7. New York, Basel: Marcel Dekker 1978Google Scholar
  9. 9.
    KARNOVSKY, M. J.: Morphology of capillaries with special reference to muscle capillaries. In: Capillary permeability (eds. C. CRONE, N. A. LASSEN). Copenhagen: Munksgaard 1970Google Scholar
  10. 10.
    KREUTZ, W.: Grundsätzliches zur Struktur von Biomembranen. Verh. dtsch. Ges. inn. Med. 81, 725 (1975)Google Scholar
  11. 11.
    PIETRA, G. G., SZIDON, J. P., LEVENTHAL, M. M., FISHMAN, A. P.: Haemoglobin as a tracer in hemodynamic pulmonary edema. Science (Wash. D. C.) 166, 1643 (1969)CrossRefGoogle Scholar
  12. 12.
    RENKIN, E. M.: Multiple pathways of capillary permeability. Circulat. Res. 41, 735 (1977)PubMedGoogle Scholar
  13. 13.
    SCHNEEBERGER, E. E.: Ultrastructural basis for alveolar capillary permeability to protein. In: Lung liquids (ed. CIBA FOUND.). Elsevier Excerpta Medica, North Holland 1976Google Scholar
  14. 14.
    SHEA, S. M., KARNOVSKY, M. J.: Vesicular transport across endothelium: simulation of a diffusion model. J. theor. Biol. 24, 30 (1969)PubMedCrossRefGoogle Scholar
  15. 15.
    STAUB, N. C.: Pulmonary edema. Physiol. Rev. 54, 6 78 (1974)Google Scholar
  16. 16.
    STRANG, L. B.: Neonatal respiration, physiological and clinical studies. Oxford: Blackwell 1977Google Scholar
  17. 17.
    WEIBEL, E. R., GIL, J.: Structure-function relationship at the alveolar level. In: Bioengineering aspects of the lung (ed. J. West). Lung Biol, in Health and Dis., vol. 3. New York, Basel: Marcel Dekker 1977Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • St. Necek

There are no affiliations available

Personalised recommendations