Information Measures and Thermodynamic Criteria of Motion

  • F. Schlögl
Part of the Springer Series in Synergetics book series (SSSYN, volume 4)


The well known connection between entropy and Shannon’s definition of information finds a generalization in the connection between Kullback’s information gain and thermodynamic quantities which are essential for entropy production, for the stability criterion of Glansdorff and Prigogine, or for the probability and dynamics of fluctuations in a steady state. Another generalization leads to a set of ordered correlation measures. In particular the measure of second order leads to specific heat and generalizations which show a characteristic critical behaviour in nonequilibrium phase transitions.


Master Equation Entropy Production Grand Canonical Ensemble Phase Space Variable Nonequilibrium Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    v. Laue, M: Geschichte der Physik Universitäts-Verlag Bonn 1946.Google Scholar
  2. [2]
    Shannon, C., Weaver, W.: The Mathematical Theory of Communication. Urbana: University of Illinois Press 1949.MATHGoogle Scholar
  3. [3]
    Jaynes, E.T.: Phys. Rev., 106, 620 (1957).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Kullback, S.: Annals of Math. Statistics 22, 79 (1951).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Schlögl, F.: Z. Physik 198, 559 (1967).ADSCrossRefGoogle Scholar
  6. [6]
    Mori, H.: Phys. Rev. 115, 298 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    McLennan, J.A.: Adv. Chem. Physics, Interscience, New York 1963.Google Scholar
  8. [8]
    Zubarev, D.N.: Soviet Phys. Doklady 10, 526 (1965).MathSciNetGoogle Scholar
  9. [9]
    Csiszar, I.: Stud. Sci. Math. Hung. 2, 299 (1967).MathSciNetMATHGoogle Scholar
  10. [10]
    Schlögl, F.: Z. Physik 193, 163 (1966).ADSCrossRefGoogle Scholar
  11. [11]
    Schlögl, F.: Z. Physik 191, 81 (1966).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Pfaffelhuber, E.: J. Statistical Physics 16, 69 (1977).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Glansdorff, P., Prigogine, I.: Physica 46, 344 (1970).ADSCrossRefGoogle Scholar
  14. [14]
    Rényi, A.: Wahrscheinlichkeitsrechnung. VEB Deutscher Verlag der Wissenschaften, Berlin 1966.Google Scholar
  15. [15]
    Schlögl, F.: Z. Physik B20, 177 (1975).ADSGoogle Scholar
  16. [16]
    Schlögl, F.: Z. Physik 267, 77 (1974).ADSCrossRefGoogle Scholar
  17. [17]
    Schlögl, F.: Z. Physik B22, 301 (1975).ADSGoogle Scholar
  18. [18]
    Schlögl, F.: Z. Physik 253, 147 (1972).ADSCrossRefGoogle Scholar
  19. [19]
    Schlögl, F.: Z. Physik 244, 199 (1971).ADSCrossRefGoogle Scholar
  20. [20]
    Schlögl, F.: Z. Physik 249, 1 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • F. Schlögl
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Hochschule AachenAachenFed. Rep. of Germany

Personalised recommendations