Advertisement

Transkription der DNS von Viren und Prokaryonten

  • Peter von Sengbusch

Zusammenfassung

Die genetische Information eines Organismus ist in der DNS linear niedergelegt. Um sie zu nutzen, muß sie zunächst komplett oder in Teilen abgerufen und von der DNS in RNS überschrieben werden. Diesen Prozeß bezeichnen wir als Transkription. Er wird durch ein Enzym, eine DNS-abhängige RNS-Polymerase, katalysiert. Der Transkriptionsprozeß ist einer der entscheidenden Kontrollmechanismen der Genexpression. Er unterliegt Regulations- und Modulationsvorgängen und besteht aus einer Anzahl hochspezifischer Teilschritte. Man unterscheidet dabei einmal zwischen dem enzymatischen Prozeß, durch den eine bestimmte Nukleotidsequenz von einem Makromolekül (DNS-Matrize) auf ein anderes (RNS: Matrize der Proteinbiosynthese) übertragen wird und den Erkennungsvorgängen, die dafür sorgen, daß die Transkriptionsmaschinerie die spezifischen Start- und Stopsignale auf der DNS-Matrize findet. Hierdurch wird eine Selektivität der Transkription gewährleistet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Beckwith, J., Zipser, D. (eds.): The lactose Operon. New York: Cold Spring Harbor Labortory 1970Google Scholar
  2. Bennett, G.N., Schweinegruber, M.E., Brown, K.D., Squires, C., Yanofsky, C.: Nucleotide sequence of region preceding trp mRNA initiation site and its role in promotor and operator function. Proc. Natl. Acad. Sci. USA 73, 2351 (1976)PubMedCrossRefGoogle Scholar
  3. Berk, A.J., Sharp, P.A.: Spliced early mRNAs of simian virus 40. Proc. Natl. Acad. Sci. USA 75, 1274 (1978)PubMedCrossRefGoogle Scholar
  4. Bertrand, K., Korn, L., Lee, F., Hatt, T., Squires, C.L., Squires, C., Yanofsky, C.: New features of the regulation of the tryptophan operon. Science 189, 22 (1975)PubMedCrossRefGoogle Scholar
  5. Bremer, H.: Chain growth rate and length of enzymatically synthesized RNA molecules. Mol. Gen. Genet. 99, 362 (1967)PubMedGoogle Scholar
  6. Chamberlin, M.J.: The selectivity of transcription. Annu. Rev. Biochem. 43, 721 (1974)PubMedCrossRefGoogle Scholar
  7. Chow, L.T., Gelinas, R.E., Broker, T.R., Roberts, R.: An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1 (1977)PubMedCrossRefGoogle Scholar
  8. Delius, H., Westphal, H., Axelrod, N.: Length measurements of RNA synthesized in vitro by Escherichia coli RNA polymerase. J. Mol. Biol. 74, 677 (1973)PubMedCrossRefGoogle Scholar
  9. Dickson, R.C., Abelson, J., Barnes, W.M., Reznikoff, W.S.: Genetic regulation: The lac control region. Science 187, 27 (1975)PubMedCrossRefGoogle Scholar
  10. Dickson, R.C., Abelson, J., Johnson, P.: Nucleotide sequence changes produced by mutations in the lac promoter of Escherichia coli. J. Mol. Biol. 111, 65 (1977)PubMedCrossRefGoogle Scholar
  11. Farabaugh, P.J.: Sequence of the lacI gene. Nature (London) 274, 765 (1978)CrossRefGoogle Scholar
  12. Flint, J.: The topography and transcription of the adenovirus genome. Cell 10, 153 (1977)PubMedCrossRefGoogle Scholar
  13. Frederick, R.J., Snyder, L.: Regulation of anti-late RNA synthesis in bacteriophage T4: A delayed early control. J. Mol. Biol. 114, 461 (1977)PubMedCrossRefGoogle Scholar
  14. Gabain, A.v., Bujard, H.: Interaction of E. coli RNA polymerase with promoters of coliphage T5. Mol. Gen. Genet. 157, 301 (1977)CrossRefGoogle Scholar
  15. Gabain, A.v., Hayward, G.S., Bujard, H.: Physical mapping of the Hind III, EcoR I, Sal and Sma restriction endonuclease cleavage fragments from bacteriophage T5 DNA. Mol. Gen. Genet. 143, 279 (1976)CrossRefGoogle Scholar
  16. Ghosh, P.K., Reddy, B., Swinscoe, J., Choudary, P.V., Lebowitz, P., Weissman, S.M.: The 5′-terminal leader sequence of late 16S mRNA from cells infected with simian virus 40. J. Biol. Chem. 253, 3643 (1978)PubMedGoogle Scholar
  17. Gilbert, W.: Starting and stopping sequences for RNA-polymerase. In: RNA polymerase. Losick, R., Chamberlin, M. (eds.). New York: Cold Spring Harbor Laboratory 1976Google Scholar
  18. Gilbert, W., Maizels, N., Maxam, A.: Sequences of controlling regions of the lactose operon. Cold Spring Harbor Symp. Quant. Biol. 38, 845 (1974)PubMedGoogle Scholar
  19. Greenblatt, J., Schleif, R.: Arabinose C protein: regulation of the arabinose operon in vitro. Nature New Biol. 223, 166 (1971)Google Scholar
  20. Hahn, W.E., Pettijohn, D.E., Ness J. van: One strand equivalent of the Escherichia coli genome is transcribed: complexity and abundance classes of mRNA. Science 197, 582 (1977)PubMedCrossRefGoogle Scholar
  21. Hayward, S.D., Smith, M.G.: The chromosome of bacteriophage T5. J. Mol. Biol. 80, 345 (1973)PubMedCrossRefGoogle Scholar
  22. Johnson, A., Meyer, B.J., Ptashne, M.: Mechanism of action of the cro protein of bacteriophage X. Proc. Natl. Acad. Sci. USA 75, 1783 (1978)PubMedCrossRefGoogle Scholar
  23. Jovin, T.M.: Recognition mechanisms of DNA-specific enzymes. Annu. Rev. Biochem. 45, 889 (1976)PubMedCrossRefGoogle Scholar
  24. Kitchingman, G.R., Lai, S.P., Westphal, H.: Loop structures in hybrids of early RNA and the separated strands of adenovirus DNA. Proc. Natl. Acad. Sci. USA 74, 4392 (1977)PubMedCrossRefGoogle Scholar
  25. Klessig, D.F.: Two adenovirus mRNAs have a common 5′ terminal leader sequence encoded at least 10 kb upstream from their main coding regions. Cell 12, 9 (1977)PubMedCrossRefGoogle Scholar
  26. Lee, F., Bertrand, K., Bennett, G., Yanofsky, C.: Comparison of the nucleotide sequences of the initial transcribed regions of the tryptophan operons of Escherichia coli and Salmonella typhimurium. J. Mol. Biol. 121, 193 (1978)PubMedCrossRefGoogle Scholar
  27. Losick, R., Chamberlin, M. (eds.): RNA polymerase. New York: Cold Spring Harbor Laboratory 1976Google Scholar
  28. Maniatis, T., Ptashne, M., Backman, K., Kleit, D., Flashman, S., Jeffrey, A., Maurer, R.: Sequences of repressor binding sites in the operators of bacteriophage X. Cell 5, 109 (1975)PubMedCrossRefGoogle Scholar
  29. Maurer, R., Maniatis, T., Ptashne, M.: Promoters are in the operators in phage lambda. Nature (London) 249, 221 (1974)CrossRefGoogle Scholar
  30. Meyer, B.J., Kleid, D.G., Ptashne, M.: X repressor turns off transcription of its own gene. Proc. Natl. Acad. Sci. USA 72, 4785 (1975)PubMedCrossRefGoogle Scholar
  31. Philipson, L.: Adenovirus gene expression — a model for mammalian cells. FEBS Lett. 74, 167 (1977)PubMedCrossRefGoogle Scholar
  32. Pirotta, V.: Sequence of OR operator of phage λ. Nature (London) 254, 114 (1975)CrossRefGoogle Scholar
  33. Pribnow, D.: Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc. Natl. Acad. Sci. USA 72, 784 (1975)PubMedCrossRefGoogle Scholar
  34. Ptashne, M., Backman, K. Humayun, M.Z., Jeffrey, A., Maurer, R., Meyer, B., Sauer, R.T.: Autoregulation and function of a repressor in bacteriophage lambda. Science 194, 156 (1976)PubMedCrossRefGoogle Scholar
  35. Sauer, R.T., Anderegg, R.: Primary structure of the X repressor. Biochemistry 17, 1092 (1978)PubMedCrossRefGoogle Scholar
  36. Schaller, H., Gray, C., Herrmann, K.: Nucleotide sequence of an RNA polymerase binding site from the DNA of bacteriophage fd. Proc. Natl. Acad. Sci. USA 72, 737 (1975)PubMedCrossRefGoogle Scholar
  37. Seeburg, P., Schaller, H.: Mapping and characterization of promoters in bacteriophages fd, fl and M13. J. Mol. Biol. 92, 261 (1975)PubMedCrossRefGoogle Scholar
  38. Seeburg, P.H., Nüsslein, C., Schaller, H.: Interaction of RNA polymerase with promoters from bacteriophage fd. Eur. J. Biochem. 74, 107 (1977)PubMedCrossRefGoogle Scholar
  39. Smith, G.R., Magasanik, B.: Nature and selfregulated synthesis of the repressor of the hut operons in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 68, 1493 (1971)PubMedCrossRefGoogle Scholar
  40. Stiiber, D., Delius, H., Bujard, H.: Electron microscopic analysis of in vitro transcriptional complexes: mapping of promoters of the coliphage T5 genome. Mol. Gen. Genet. 166, 141 (1978)CrossRefGoogle Scholar
  41. Szybalski, W.: Genetic and molecular map of Escherichia coli bacteriophage lambda (λ). In: Handbook of chemistry and molecular biology. Fasman, G.D. (ed.). Cleveland, Ohio: C.R.C. Press. Nucleic Acids 2, 677 (1976)Google Scholar
  42. Szybalski, W.: Initiation and regulation of transcription and DNA replication in coliphage lambda. In: Regulatory biology. Copeland, J.C., Marzluff, G.A. (eds.), S. 3–45. Columbus, Ohio: Ohio State University Press 1977Google Scholar
  43. Talkinton, S., Pero, I.: Restriction fragment analysis of the temporal program of bacteriophage SPO1 transcription and its control by phage-modified RNA polymerase. Virology 83, 365 (1977)CrossRefGoogle Scholar
  44. Walz, A., Pirotta, V., Ineichen, K.: X repressor regu-lates the switch between PR and Prm promoters. Nature (London) 262, 665 (1976)CrossRefGoogle Scholar
  45. Westphal, H., Lai, S.P.: Quantitative electron microscopy of early adenovirus RNA. J. Mol. Biol. 116, 525 (1977)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Peter von Sengbusch
    • 1
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Deutschland

Personalised recommendations