Advertisement

Entwicklung spezialisierter Zellen

  • Peter von Sengbusch

Zusammenfassung

Jeder Vielzeller enthält eine Reihe verschiedener differenzierter und spezialisierter Zelltypen, und die Probleme ihrer Differenzierung gehören zu den Hauptanliegen der Entwicklungsphysiologie:
  • Welche Mechanismen liegen einer differentiellen Genaktivierung zugrunde? Welche Rolle spielen dabei extrazelluläre und intrazelluläre Faktoren?

  • Auf welcher Ebene (Transkription, mRNS-Processing, Gene splicing, Translation) erfolgt die Kontrolle?

  • Wie lagern sich die Zellen zu Geweben zusammen? Wie kooperieren Zellen unterschiedlicher Herkunft miteinander?

Es gibt zahlreiche Möglichkeiten, these Fragen, zumin-dest ansatzweise, zu beantworten. In diesem Kapitel werden wir uns mit der Entwicklung von nur drei Typen spezialisierter Zellen befassen: Erythrozyten, Skelettmuskelzellen und Neuronen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Augusti-Tocco, G., Sato, G.: Establishment of functional clonal lines of neurones from mouse neuroblastoma. Proc. Natl. Acad. Sci.USA 64, 311 (1969)PubMedCrossRefGoogle Scholar
  2. Bock, E.: Nervous system specific proteins. J. Neuro-chem. 30, 7(1978)Google Scholar
  3. Buckingham, M.E., Caput, D., Cohen, A., Whalen, R.G., Gros, F.: The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture. Proc. Natl. Acad. Sci. USA 71, 1466(1974)PubMedCrossRefGoogle Scholar
  4. Buckingham, M.E., Cohen, A., Gros, F.: Cytoplasmic distribution of pulse-labelled poly(A)-containing RNA, particularly 26 S RNA, during myoblast growth and differentiation. J. Mol. Biol. 103, 611 (1976)PubMedCrossRefGoogle Scholar
  5. Buckingham, M.E., Whalen, R.G., Gros, F.: Messenger ribonucleic acid metabolism during myogenesis. Biochem. Soc. Trans. 5, 474 (1977)PubMedGoogle Scholar
  6. Bunge, R., Johnson, M., Ross, C.D.: Nature and nurture in development of the autonomic neuron. Science 199, 1409(1978)PubMedCrossRefGoogle Scholar
  7. Chaffee, J.K., Schachner, M.: NS-7 (nervous system antigen-7): A cell surface antigen of mature brain, kidney, and spermatozoa shared by embryonal tissues and transformed cells. Dev. Biol. 62, 185 (1978)PubMedCrossRefGoogle Scholar
  8. Chen, L.B.: Alteration in cell surface LETS protein during myogenesis. Cell 10, 393 (1977)PubMedCrossRefGoogle Scholar
  9. Diamond, J., Cooper, E., Turner, C., MacIntyre, L.: Trophic regulation of nerve sprouting. Science 193, 371(1976)PubMedCrossRefGoogle Scholar
  10. Dube, S.K., Gaedicke, G., Kluge, N., Weimann, B.J., Melderis, H., Steinheider, G., Grozier, T., Beckmann, H., Ostertag, W.: Hemoglobin-synthesizing mouse and human erythroleukemic cell lines as model systems for the study of differentiation and control of gene expression. In: Differentiation and control of malignancy of tumor cells. Nakahara, W., Ono, T., Sugrmura, T., Sugano, H. (eds.). Tokyo: University of Tokyo Press 1974Google Scholar
  11. Eisen, H., Nasi, S., Georgopoulos, C.P., Arndt-Jovin, D., Ostertag, W.: Surface changes in differentiating friend erythroleukemic cells in culture. Cell 10, 689(1977)PubMedCrossRefGoogle Scholar
  12. Eisen, H., Keppel-Ballivet, F., Georgopoulos, C.P., Sassa, S., Granick, J., Pragneil, I., Ostertag, W.: Biochemical and genetic analysis of erythroid differentiation in friend virus-transformed murine erythroleukemic cells. Cold Spring Harbor Laboratory 1978Google Scholar
  13. Fields, K.J., Brockes, J.P., Mirsky, R., Wendon, M.B.: Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture. Cell 14, 43 (1978)PubMedCrossRefGoogle Scholar
  14. Furshpan, E.J., MacLeish, P.R., O’Lague, P.H., Potter, D.D.: Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: Evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Natl. Acad. Sci. USA 73, 4225(1976)PubMedCrossRefGoogle Scholar
  15. Hamprecht, B.: Cell cultures as model systems for studying the biochemistry of differentiated functions of nerve cells. In: Colloquium der Gesellschaft für Biologische Chemie. Jaenicke, L. (ed.), S. 391–423. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  16. Harrison, P.R.: Analysis of erythropoesis at the molecular level. Nature (London) 262, 353 (1976)CrossRefGoogle Scholar
  17. Keppel, F., Allet, B., Eisen, H.: Appearance of a chromatine protein during the erythroid differentiation of Friend virus-transformed cells. Proc. Natl. Acad. Sci. USA 74, 653 (1977)PubMedCrossRefGoogle Scholar
  18. Klee, W.A., Nirenberg, M.: A neuroblastoma x glioma hybrid cell line with morphine receptors. Proc. Natl. Acad. Sci. USA 71, 3474 (1974)PubMedCrossRefGoogle Scholar
  19. Konigsberg, I.R.: Clonal analysis of myogenesis. Science 140, 1273(1963)PubMedCrossRefGoogle Scholar
  20. Lampert, A., Nirenberg, M., Klee, W.A.: Tolerance and dependence evoked by an endogenous opiate peptide. Proc. Natl. Acad. Sci. USA 73, 3165 (1976)PubMedCrossRefGoogle Scholar
  21. Letourneau, P.C.: Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Dev. Biol. 44, 77 (1975)PubMedCrossRefGoogle Scholar
  22. Marks, P.A., Rifkind, R.A.: Erythroleukemic differentiation. Annu. Rev. Biochem. 47, 419 (1978)PubMedCrossRefGoogle Scholar
  23. Minna, J., Nelson, P., Peacock, J., Glazer, D., Nirenberg, M.: Genes for neuronal properties expressed in neuroblastoma x glioma cell hybrids. Proc. Natl. Acad. Sci. USA 68, 234 (1976)CrossRefGoogle Scholar
  24. Nelson, P.G., Christian, C.N., Daniels, MP., Henkart, M., Bullock, P., Mullinax, D., Nirenberg, M.: Formation of synapses between cells of a neuroblastoma x glioma hybrid clone and mouse myotubes. Brain Res. 174, 245(1978)CrossRefGoogle Scholar
  25. Patterson, P.H., Potter, D.D., Fushpan, E.J.: The chemical differentiation of nerve cells. Sci. Am. Juli 1978, S. 38Google Scholar
  26. Puro, D.G., Nirenberg, M.: On the specificity of synapse formation. Proc. Natl. Acad. Sci. USA 73, 3544(1976)PubMedCrossRefGoogle Scholar
  27. Rees, R.P.: The morphology of interneuronal synap-togenesis: a review. Fed. Proc. 37, 2000 (1978)PubMedGoogle Scholar
  28. Sassa, S., Granick, J.L., Eisen, H., Ostertag, W.: Regulation of heme biosynthesis in mouse Friend virus-transformed cells in culture. In: In vitro aspects of erythropoiesis. Murphy, M.J., Jr. (ed.). New York, Heidelberg, Berlin: Springer 1978Google Scholar
  29. Schachner, M.: NS-1 (nervous system antigen-1), a glial-cell-specific antigenic component of the surface membrane. Proc. Natl. Acad. Sci. USA 71, 1795(1974)PubMedCrossRefGoogle Scholar
  30. Schachner, M., Worthham, K.A., Carter, L.D., Chaffee, J.K.: NS4 (nervous system antigen-4), a cell surface antigen of developing and adult mouse brain and sperm. Dev. Biol. 44, 313 (1975)PubMedCrossRefGoogle Scholar
  31. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J.H., Culp. W., Brandt. B.L.: Clonal cell lines from the rat central nervous system. Nature (London) 249, 224 (1974)CrossRefGoogle Scholar
  32. Scordilis, S.P., Adelstein, R.S.: Myoblast myosin phosphorylation is a prerequisite for actin-activa-tion. Nature (London) 268, 558 (1977)CrossRefGoogle Scholar
  33. Solter, D., Schachner, M.: Brain and sperm cell surface antigen (NS-4) on preimplantation mouse embryos. Dev. Biol. 52. 98 (1976)PubMedCrossRefGoogle Scholar
  34. Yaffee, D.: Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA 61, 477 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Peter von Sengbusch
    • 1
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Deutschland

Personalised recommendations