Advertisement

Chromosomen

  • Peter von Sengbusch

Zusammenfassung

Chromosomen erhielten ihren Namen 1888 von Wald-eyer. Es sind diejenigen Strukturen in einer sich teilenden Eukaryontenzelle, die sich mit einigen basischen Farbstoffen intensiv anfärben lassen. Heute ist eine Reihe neuartiger Farbstoffe zum Studium der Chromosomenstruktur in Gebrauch. Wir haben bereits darüber gesprochen (s. Kap. 3), daß es basenspezifische Liganden gibt, mit deren Hilfe man AT- resp. GC-reiche Abschnitte im Chromosom lokalisieren kann. Durch Einsatz dieser Techniken wurde u.a. die Lage von SatDNS sowie von Heterochromatin bestimmt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allen, J.W., Latt, S.A.: Analysis of sister chromatid exchange formation in vivo in mouse spermatogonia as a new test system for environmental mutagens. Nature (London) 260, 449 (1976)CrossRefGoogle Scholar
  2. Chromosome structure and function. Cold Spring Harbor Symp. Quant. Biol. 38 (1974)Google Scholar
  3. Crick, F.H.C.: Chromosome structure and function. Future prospects. Eur. J. Biochem. 83, 1 (1978)PubMedCrossRefGoogle Scholar
  4. Fredga, K.: Chromosomal changes in vertebrate evolution. Proc. R. Soc. Lond. B199 377 (1977)PubMedCrossRefGoogle Scholar
  5. Gosden, J.R., Mitchell, A.R., Buckland, R.A., Clayton, R.P., Evans, H.J.: The location of four human satellite DNAs on human chromosomes. Exp. Cell Res. 92, 148(1975)PubMedCrossRefGoogle Scholar
  6. Gosden, J.R., Mitchell, A.R., Seuanez, H.N., Gosden, CM.: The distribution of sequences complementary to human satellite DNAs I, II and IV in the chromosomes of chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla) and orang utan (Pongo pyg-maeus) Chromosoma 63, 253 (1977)PubMedCrossRefGoogle Scholar
  7. Goss, S.J., Harris, H.: New method for mapping genes in human chromosomes. Nature (London) 255, 680(1975)CrossRefGoogle Scholar
  8. Goss, S.J., Harris, H.: Gene transfer by means of cell fusion: Statistical mapping of the human X-chro-mosome by analysis of radiation-induced gene segregation. J. Cell Sci. 25, 17 (1977a)PubMedGoogle Scholar
  9. Goss, S.J., Harris, H.: Gene transfer by means of cell fusion: The mapping of 8 loci on human chromosome 1 by statistical analysis of gene assortment in somatic cell hybrids. J. Cell Sci. 25, 39 (1977b)PubMedGoogle Scholar
  10. Jones, G.H.: Meiotic errors in rye related to chiasma formation. Mutation Res. 5, 385 (1968)PubMedGoogle Scholar
  11. Jones, G.H.: Giemsa C-banding of rye meiotic chromosomes and the nature of “terminal” chiasmata. Chromosoma 66, 45 (1978)CrossRefGoogle Scholar
  12. Kao, F.-T., Puck, T.T.: Genetics of somatic mammalian cells: Induction and isolation of nutritional mutants in Chinese hamster cells. Proc. Natl. Acad. Sci. USA 60, 1275(1968)PubMedCrossRefGoogle Scholar
  13. Klebe, R.J., Chen, T., Ruddle, F.H.: Mapping of a human genetic regulator element by somatic cell genetic analysis. Proc. Natl. Acad. Sci. USA 66, 1220(1970)PubMedCrossRefGoogle Scholar
  14. McBride, O.W., Ozer, H.L.: Transfer of genetic information by purified metaphase chromosomes. Proc. Natl. Acad. Sci. USA 70, 1258 (1975)CrossRefGoogle Scholar
  15. McKusick, V.A., Ruddle, F.H.: The status of the gene map of the human chromosomes. Science 196, 390(1977)PubMedCrossRefGoogle Scholar
  16. Nagl, W.: Zellkern und Zellzyklen. Stuttgart: Ulmer 1976Google Scholar
  17. Pardue, M.L., Gall, J.G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356 (1970)PubMedCrossRefGoogle Scholar
  18. Pontecorvo, G.: Induction of directional chromosome elimination in somatic cell hybrids. Nature (London) 230, 367 (1971)CrossRefGoogle Scholar
  19. Ris, H.: Primitive mitotic mechanisms. BioSystems 7, 298(1975)PubMedCrossRefGoogle Scholar
  20. Schweizer, D.: Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58, 307 (1976)PubMedCrossRefGoogle Scholar
  21. Schweizer, D.: R-banding produced by DNase I digestion of chromomycin-stained chromosomes. Chromosoma 64, 117(1977)PubMedCrossRefGoogle Scholar
  22. Singh, R.H., Röbbelen, G.: Identification by Giemsa technique of the translocations separating cultivated rye from three wild species of Secale. Chromosoma 59, 217 (1977)CrossRefGoogle Scholar
  23. Takayama, S.,Sakanishi, S.: Differential Giemsa staining of sister chromatids after extraction with acids. Chromosoma 64, 109 (1977)PubMedCrossRefGoogle Scholar
  24. Tjio, J.H.: Levari, A.: The chromosome number of man. Hereditas 42, 1 (1956)CrossRefGoogle Scholar
  25. Wang, H.C., Fedoroff, S.: Banding in human chromosomes treated with trypsin. Nature New Biol. 235, 52(1972)PubMedCrossRefGoogle Scholar
  26. Weiss, M.C., Green, H.: Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. Natl. Acad. Sci. USA 58, 1104 (1967)PubMedCrossRefGoogle Scholar
  27. Willecke, K., Ruddle, F.H.: Transfer of the human gene for hypoxanthine-guanine phosphoribosyl-transferase via isolated human metaphase chromosomes into mouse L-cells. Proc. Natl. Acad. Sci. USA 72, 1792(1975)PubMedCrossRefGoogle Scholar
  28. Willecke, K., Mierau, R., Krüger, A., Lange, R.: Chromosomal gene transfer of human cytosol thymidine kinase into mouse cells. Mol. Gen. Genet. 161, 49(1978)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Peter von Sengbusch
    • 1
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Deutschland

Personalised recommendations