Advertisement

Chromatin: Proteine im Zellkern

  • Peter von Sengbusch

Zusammenfassung

DNS ist im Zellkern stets mit Proteinen assoziiert, die man zwei Gruppen zuordnet:
  1. a)

    basisch reagierenden Histonen und

     
  2. b)

    sauer reagierenden „Nichthistonen“

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Compton, J.L., Bellard, M., Chambon, P.: Biochemical evidence of variability in the DNA repeat length in the chromatin of higher eukaryotes. Proc. Natl. Acad. Sci. USA 73, 4382 (1976)PubMedCrossRefGoogle Scholar
  2. Douvas, A.S., Harrington, C.A., Bonner, J.: Major nonhistone proteins of rat liver chromatin: Preliminary identification of myosin, actin, tubulin, and tropomyosin. Proc. Natl. Acad. Sci. USA 72, 3902 (1975)PubMedCrossRefGoogle Scholar
  3. Finch, J.T., Noll,M., Kornberg, R.D.: Electron microscopy of defined lengths of chromatin. Proc. Natl. Acad. Sci. USA 72, 3320 (1975)PubMedCrossRefGoogle Scholar
  4. Finch, J.T., Lutter, L.C., Rhodes, D., Brown, R.S., Rushton, B., Levitt, M., Klug, A.: Structure of nucleosome core particles of chromatin. Nature (London) 269, 29 (1977)CrossRefGoogle Scholar
  5. Franke, W.W., Scheer, U., Trendelenburg, M.F., Spring, H., Zentgraf, H.: Absence of nucleosomes in transcriptionally active chromatin. Cytobiologie 75, 401 (1976)Google Scholar
  6. Gottesfeld, J.M.: Organization of transcribed regions of chromatin. Phil. Trans. R. Soc. Lond. B 283, 343 (1978)CrossRefGoogle Scholar
  7. Jansing, R.L., Stein, J.L., Stein, G.S.: Activation of histone gene transcription by nonhistone chromosomal proteins in WI-38 human diploid fibroblasts. Proc. Natl. Acad. Sci. USA 74, 173 (1977)PubMedCrossRefGoogle Scholar
  8. Jockusch, B.M.: Nuclear proteins in Physarum polycephalum. Ber. Dtsch. Bot. Ges. 86, 39 (1973)Google Scholar
  9. Kornberg, R.D.: Chromatin structure: A repeating unit of histones and DNA. Science 184, 868 (1974)PubMedCrossRefGoogle Scholar
  10. Kornberg, R.D.: Structure of chromatin. Annu. Rev. Biochem. 46, 931(1977)PubMedCrossRefGoogle Scholar
  11. Lyon, M.F.: Chromosomal and subchromosomal inactivation. Annu. Rev. Genet. 2, 31 (1968)CrossRefGoogle Scholar
  12. Matthews, H.R., Bradbury, E.M.: The role of H I histone phosphorylation in the cell cycle. Exp. Cell Res. 111, 343 (1978)PubMedCrossRefGoogle Scholar
  13. McKnight, S.L., Miller, O.L.: Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12, 795 (1977)PubMedCrossRefGoogle Scholar
  14. Morris, N.R.: A comparison of the structure of chicken erythrozyte and chicken liver chromatin. Cell 9, 627 (1976)PubMedCrossRefGoogle Scholar
  15. Müller, U., Zentgraf, H., Eicken, I., Keller, W.: Higher order structure of simian virus 40 chromatin. Science 201, 406 (1978)PubMedCrossRefGoogle Scholar
  16. Nagl, W.: Zellkern und Zellzyklen. Stuttgart: E. Ulmer 1976Google Scholar
  17. Noll, M., Kornberg, R.D.: Action of micrococcal nuclease on chromatin and the location of histon H I. J. Mol. Biol. 109, 393 (1977)PubMedCrossRefGoogle Scholar
  18. Olins, A.L., Carlson, R.D., Olins, D.E.: Visualization of chromatin substructure of v bodies. J. Cell Biol. 64, 528 (1975)PubMedCrossRefGoogle Scholar
  19. Oudet, P., Gross-Bellard, M., Chambon, P.: Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4, 281 (1975)PubMedCrossRefGoogle Scholar
  20. Paulson, J.R., Laemmli, U.K.: The structure of histone-depleted metaphase chromosomes. Cell 12, 817 (1977)PubMedCrossRefGoogle Scholar
  21. Scheer, U.: Changes in nucleosome frequency in nucleolar and nonnucleolar chromatin as a function of transcription: an electronmicroscopic study. Cell 13, 535 (1978)PubMedCrossRefGoogle Scholar
  22. Sollner-Webb, B., Camerini-Otero, R.D., Felsenfeld, G.: Chromatin structure as probed by nucleases and proteases: Evidence for the central role of histones H 3 und H 4. Cell 9, 179(1976)PubMedCrossRefGoogle Scholar
  23. Sperling, L., Klug, A.: X-ray studies on „native“chromatin. J. Mol. Biol. 112, 253 (1977)PubMedCrossRefGoogle Scholar
  24. Stein, G., Park, W., Thrall, C., Mans, R., Stein, J.: Regulation of cell cycle stage-specific transcription of histone genes from chromatin by nonhistone chromosomal proteins. Nature (London) 257, 764 (1975)CrossRefGoogle Scholar
  25. Stein, G., Stein, J., Kleinsmith, L., Park, W., Jansing, R., Thomson, J.: Nonhistone chromosomal proteins and histone gene transcription. Prog. Nucl. Acid Res. Mol. Biol. 19, 421 (1976)CrossRefGoogle Scholar
  26. Thomas, J.O., Thompson, R.J.: Variation in chromatin structure in two cell types from the same tissue: a short DNA repeat length in cerebral cortex neurons. Cell 10, 633 (1977)PubMedCrossRefGoogle Scholar
  27. Wang, T.Y., Kostraba, N.C., Newman, R.S.: Selective transcription of DNA mediated by nonhistone proteins. Prog. Nucl. Acid Res. Mol. Biol. 19, 447 (1976)CrossRefGoogle Scholar
  28. Weintraub, H., Worcel, A., Alberts, B.: A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 9, 409 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Peter von Sengbusch
    • 1
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Deutschland

Personalised recommendations