Advertisement

Immunology of the Nicotinic Acetylcholine Receptor

  • Sara Fuchs
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 85)

Abstract

The classical surface antigens of Enterobacteriaceae: 0, K, and H antigens have been studied extensively in the past and have provided a basis for the taxonomy of this family (Kauffmann, 1966, 1975). In comparison to the vast knowledge accumulated on the structure, localization, genetic determination, and biologic effects of O and K antigens (Weinbaum et al., 1971; Ørskov et al., 1977), the precise knowledge of antigens shared by various microorganisms is small. This is most probably due to the fact that the“... direction of research in the past has to a great deal been stimulated by problems and questions of taxonomy, etiology of diseases and epidemiology” (Neter and Whang, 1972).

Keywords

Acetylcholine Receptor Nicotinic Acetylcholine Receptor Muscle Cell Culture Myasthenic Patient AChR Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, 0., Aharonov, A., Teitelbaum, D., Fuchs, S.: Myasthenia gravis and acetylcholine receptor: Effect of steroids in clinical course and ellular immune response to acetylcholine receptor. Arch. Neurol. 32, 684–687 (1975a)PubMedGoogle Scholar
  2. Abramsky, 0., Aharonov, A., Webb, Fuchs, S.: Cellular immune response to acetylcholine receptor-rich fraction in patients with myasthenia gravis. Clin. Exp. Immunol. 19, 11–16 (1975b)PubMedGoogle Scholar
  3. Abramsky, 0., Tarrab-Hazdai, R., Aharonov, A., Fuchs, S.: Immunosuppression of experimental autoimmune myasthenia gravis by hydrocortisone and azathioprine. 1. Immunol. 117,225–228 (1976)Google Scholar
  4. Aharonov, A., Abramsky, 0., Tarrab-Hazdai, R., Fuchs, S.: Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet 1975 a/II, 340–342CrossRefGoogle Scholar
  5. Aharonov, A., Kalderon, N., Silman, I., Fuchs, S.: Preparation and immunochemical characterization of a water-soluble acetylcholine receptor fraction from the electric organ tissue of the electric eel’ Immunochemistry 12, 765–771 (1975 b)PubMedCrossRefGoogle Scholar
  6. Aharonov, A., Tarrab-Hazdai, R., Abramsky, 0., Fuchs, S.: Immunological relationship between acetylcholine receptor and thymus: a possible significance in myasthenia gravis. Proc. Natl. Acad. Sci. U.S.A. 72, 1456–1459 (1975c)PubMedCrossRefGoogle Scholar
  7. Aharonov, A., Tarrab-Hazdai, R., Silman, I., Fuchs, S.: Immunochemical studies on acetylcholine receptor from Torpedo californica. Immunochemistry 14, 129–137 (1977)PubMedCrossRefGoogle Scholar
  8. Anwyl, R., Appel, S.M., Narahashi, T.: Myasthenia gravis serum reduces acetylcholine sensitivity in cultured rat myotubes. Nature 267, 262–263 (1977)PubMedCrossRefGoogle Scholar
  9. Appel, S.H., Almon, R.R., Levy, N.: Acetylcholine receptor antibodies in myasthenia gravis. N. Eng!. 1. Med. 293, 760–761 (1975)Google Scholar
  10. Appel, S.H., Anwyl, R., McAdams, M. W., Elias, S.: Accelerated degradation of acetylcholine receptor from cultured rat myotubes with myasthenia gravis sera and globins. Proc. Natl. Acad. Sci. U.S.A. 74,2130–2134 (1977)PubMedCrossRefGoogle Scholar
  11. Arnon, R., Maron, E.: An immunological approach to the structural relationship between hen egg-white lysozyme and bovine IX-Iactabumin. 1. Mol. BioI. 61, 225–235 (1971)Google Scholar
  12. Bartfeld, D., Fuchs, S.: Immunological characterization of an irreversibly denatured acetylcholine receptor. F.E.B.S. Lett. 77, 214–218 (1977) CrossRefGoogle Scholar
  13. Bartfeld, D., Fuchs,S.: Specific immunosuppression of experimental autoimmune myasthenia gravis by denatured acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A. 75, 4006–4010 (1978)PubMedCrossRefGoogle Scholar
  14. Bender, A.N., Ringel, S.P., Engel, W.K., Daniels, M.P., Vogel, Z.: Myasthenia gravis: a serum factor blocking acetylcholine receptors of the human neuromuscular junction. Lancet 607–609 (1971)Google Scholar
  15. Bevan, S ., Heinemann,S., Lennon, V.A., Lindstrom, J.: Reduced muscle acetylcholine sensitivity in rats immunized with acetylcholine receptor. Nature 260, 438–439 (1976)Google Scholar
  16. Bevan,S., Kullberg, R. W., Heinemann, S.F.: Human myasthenic sera reduce acetylcholine sensitivity of human muscle cells in tissue culture. Nature 267, 263–265 (1977)PubMedCrossRefGoogle Scholar
  17. Brener, T., Abramsky, 0., Lisak, R.P., Zweiman, B., Tarrab-Hazdai, R., Fuchs,S.: Antibodies to acetylcholine receptor in serum of patients with myasthenia gravis: Radioimmunoassay. Isr. 1. Med. Sci. 14, 986–989 (1978)Google Scholar
  18. Briley, M.S., Changex, J.-P.: Isolation and purification of the nicotinic acethylcholine receptor and its functional reconstitution into a membrane environment. Int. Rev. Neurobio!. 20,31–63 (1977)Google Scholar
  19. Brockes, J.P., Hall, Z.W.:Synthesis of acetylcholine receptor by denervated rat diaphragm muscle. Proc. NatlAcad. Sci. U.S.A. 72, 1368–1372 (1975)CrossRefGoogle Scholar
  20. Changeux, J.-P.: The cholinergic receptor protein from fish electric organ. In: handbook ofPychopharmacology. Iversen, L.L. et al. (eds.) New York: Plenum Press 1975, Vol VI, pp.235–301Google Scholar
  21. Claudio, T., Raftery, M.A.: Immunological comparison of acetylcholine receptors and their subunits from species of electric ray. Arch. Biochem. Biophys. 181, 484–489 (1977)Google Scholar
  22. Cohen, J.B., Weber, M., Huchet, M., Changeux, J.-P.: Purification from Torpedo marmorata electric tissue of membrane fragments particularly rich in cholinergic receptor. F.E.B.S. Lett. 26, 43–47 (1972)CrossRefGoogle Scholar
  23. Dau, P.C., Lindstrom, J.M., Cassel, C.K., Denyl, E.H., Shev, E.E., Spitler, L.E.: Plasmapheresis and immunosuppressive drug therapy in myasthenia gravis. N. Eng!. 1. Med. 24,1134–1140 (1977)Google Scholar
  24. Engel, A.G., Tsujihata, M., Lindstrom, J.M., Lennon, V.A.: The motor end plate in myastheImmunology of the Nicotinic Acetylcholine Receptor 27 nia gravis and in experimental autoimmune myasthenia gravis. A quantitative ultra-structural study. Ann. N.Y. Acad. Sci. 274, 60–79 (1976)PubMedCrossRefGoogle Scholar
  25. Engel, W.K., Trotter, J.L., McFarlin, D.F., McIntosh, C.L.: Thymic epithelial cell contains acetylcholine receptor. Lancet 130–1311 (1977)Google Scholar
  26. Fambrough, D.M., Drachman, D.B., Satyamurti, S.: Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science 182, 293–295 (1973)Google Scholar
  27. Fritze, D., Herrmann, C., Jr., Naeim, F., Smith, G.S., Zeller, E., Walford, R.L.: The biologic significance of HL-A antigen markers in myasthenia gravis. Ann. N.Y. Acad. Sci. 274,440–450 (1976)Google Scholar
  28. Fuchs, S., Nevo, D., Tarrab-Hazdai, R., Yaar, I.: Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature 263, 329–330 (1976) Google Scholar
  29. Fuchs, S., Tarrab-Hazdai, R., Nevo, D., Bartfeld, D.: Experimental autoimmune myasthenia gravis: a tool for studying the pathogenesis and therapy of myasthenia gravis. In: The Biochemistry of Myasthenia Gravis and Muscular Dystrophy. Marchbanks, R., Lunt, G. (eds.), pp. 189–216. Academic Press 1978 Google Scholar
  30. Fulpius, B. W., Fontana, A., Cuenoud, S.: Central nervous system involvement in experimental autoimmune myasthenia gravis. Lancet 1977/II,350–351CrossRefGoogle Scholar
  31. Goldstein, G.: The thymus and neuromuscular function. Lancet 1968/II, 119–122CrossRefGoogle Scholar
  32. Granato, D.A., Fulpius, B. W., Moody, J.F.: Experimental myasthenia in Balb/c mice immunized with rat acetylcholine receptor from denervated muscle. Proc. Natl. Acad. Sci. U.S.A. 73,2872–2876 (1976)Google Scholar
  33. Green, D.P.L., Miledi, R., Vincent, A.: Neuromuscular transmission after immunization against acetylcholine receptors. Proc. R. Soc. Lond. [BioI.] 189, 57–68 (1975)Google Scholar
  34. Heilbronn, E.: Biochemistry of cholinergic receptors. In: Cholinergic Mechanisms. Wasser, P.G. (ed.) New York: Raven Press 1975, pp. 343–364Google Scholar
  35. Heilbronn, E., Mattson, C., Staib erg, E., Hilton-Brown, P.: Neurophysiological signs of myasthenia in rabbits after receptor antibody development. 1. Neurol. Sci. 24, 59–64 (1975)Google Scholar
  36. Heinemann, S., Bevan, S., Kullberg, R., Lindstrom, J., Rice, J.: Modulation of acetylcholine receptor by antibody against the receptor. Proc. Natl. Acad. Sci. U.S.A. 74, 3090–3094 (1977)Google Scholar
  37. Jenkins, R.B.: Treatment of myasthenia gravis with prednisone. Lancet 1972, 765–767Google Scholar
  38. Kalden, J.R., Williamson, W.G., Johnson, R.J., Irvine, W.J.: Studies on experimental autoimmune thymitis in guinea pigs. Clin. Exp. Immunol. 5, 319–340 (1969)Google Scholar
  39. Kao, I., Drachman, D.B.: Myasthenic immunoglubulin accelerates acetylcholine receptor degradation. Science 196, 527–529 (1977 a)Google Scholar
  40. Kao, I., Drachman, D.B.: Thymic muscle cells bear acetylcholine receptors: possible relation to myasthenia gravis. Science 195, 74–75 (1977b)Google Scholar
  41. Karlin, A., Weill, C.H., McNamee, M.G., Valderrama, R.: Facets of the structures of acetylcholine receptors from Electrophorus and Torpedo. Cold Spring Harbor Symp. Quant. Biol. 40, 203–2\0 (1976)Google Scholar
  42. Lee, C. Y.: Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu. Rev. Pharmacol. 12,265–286 (1972)Google Scholar
  43. Lefvert, A.K., Pirskanen, K.: Acetylcholine-receptor antibodies in cerebrospinal fluid of patients with myasthenia gravis. Lancet 1977/II, 351–352Google Scholar
  44. Lennon, V.A., Lindstrom, J.M., Seybold, M.E.: Experimental autoimmune myasthenia: cellular and humoral immune responses. 1. Exp. Med. 141, 1365–1375 (1975).Google Scholar
  45. Lennon, V.A., Lindstrom, J.M., Seybold, M.E.: Experimental autoimmune myasthenia gravis: cellular and humoral immune responses. Ann. N.Y. Acad. Sci. 274, 283–299 (1976)Google Scholar
  46. Lennon, V.A., Seybold, M.F., Lindstrom, J.M., Cochrane, c., Ulevitch, R.: Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. 1. Exp. Med. 147, 973–983 (1978)Google Scholar
  47. Lindstrom, J.M., Einarson, B.L., Lennon, V.A., Seybold, M.E.: Pathological mechanisms in experimental autoimmune myasthenia gravis: Immunogenicity of syngeneic muscle acetylcholine receptor and quantitative extraction of receptor and antibody receptor complexes from muscles of rats with experimental autoimmune myasthenia gravis. 1. Exp. Med. 144, 726–638 (1976a) 28 S. FuchsGoogle Scholar
  48. Lindstrom, J., Einarson, B., Merlie, J.: Immunization of rats with polypeptide chains from torpedo acetylcholine receptor causes an autoimmune response to receptors in rat muscle. Proc. Natl. Acad. Sci. U.S.A. 75, 769–773 (1978)Google Scholar
  49. Lindstrom, J.M., Engel, A.G., Seybold, M.E., Lennon, V.A., Lambert, E.H.: Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. J. Exp. Med. 144, 739–753 (1976b)Google Scholar
  50. Lindstrom, J.M., Seybold, M.E., Lennon, V.A., Whittingham, S., Duane, D.D.: Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates, and diagnostic value. Neurology (Minneap.) 26, 1054–1059 (1976c)Google Scholar
  51. Martinez, R.D., Tarrab-Hazdai, R., Aharonov, A., Fuchs, S.: Cytophilic antibodies in experimental autoimmune myasthenia gravis. J. Immunol. 118, 17–20 (1977)Google Scholar
  52. Matell, G., Bergstrom, K., Franksson, C., Hammarstrom, L., Lefvert, A.K., Moller, E., Von Reis, G., Smith, E.: Effects of some immunosuppressive procedures on myasthenia gravis. Ann. N.Y. Acad. Sci. 274, 659–676 (1976)Google Scholar
  53. Merlie, J.P., Sobel, A., Changeux, J.-P., Gros, F.: Synthesis of acetylcholine receptor during differentiation of cultured embryonic muscle cells. Proc. Nati. Acad. Sci. U.S.A. 72, 4028–4032 (1975)Google Scholar
  54. Nachmansohn, D.: Chemical and Molecular Basis of Nerve Activity. New York: Academic Press 1959Google Scholar
  55. Nastuk, W.L., Plecia, OJ., Osserman, K.E.: Changes in serum complement activity in patients with myasthenia gravis. Proc. Soc. Exp. BioI. Med. 105, 177–184 (1960)Google Scholar
  56. Newsom Davis, J., Pinching, AJ., Vincent, A., Wilson, S.G.: Function of circulating antibody to acetylcholine receptor in myasthenia gravis investigated by plasma exchange. Neurology (Minneap.) 28, 266–272 (1978)Google Scholar
  57. Oosterhuis, HJ.G.H., Feltkamp, T.E. W., van Rossum, A.L., van den Berg-Loonen, P.M., Nijenhuis, L.E.: HL-A antigens, autoantibody production and associated diseases in thymoma patients, with an without myasthenia gravis. Ann. N.Y. Acad. Sci. 274, 468–474 (1976)Google Scholar
  58. Otterness, I.G., Chang, Y.: Comparative study of cyclophosphamide, 6-mercaptopurine, azathioprine and methotrexate: Relative effects on the humoral and the cellular immune response in the mouse. Clin. Exp. Immunoi. 26, 346–354 (1976)Google Scholar
  59. Patrick, J., Lindstrom, J.: Autoimmune response to acetylcholine receptor. Science 180, 871–872 (1973)Google Scholar
  60. Patrick, J., Stallcup, W.B.: Immunological distinction between acetylcholine receptor and the IX-bungarotoxin-binding component on sympathetic neurons. Proc. Nati. Acad. Sci. U.S.A. 77, 4689–4692 (1977)Google Scholar
  61. Penn, A.S., Chang, H. W., Lovelace, R.E., Niemi, W., Miranda, A.: Antibodies to acetylcholine receptors in rabbits: immunochemical and electrophysiological studies. Ann. N.Y. Acad. Sci. 274, 354–376 (1976)Google Scholar
  62. Penn, A.S., Lovelace, R.E., Lange, DJ., Toufexis, G., Brockbank, K.: Experimental myasthenia gravis in neonatally thymectomized rabbits. Neurology (Minneap.) 27, 365 (1977)Google Scholar
  63. Pinching, AJ., Peters, D.K., Newsom Davis, J.: Remission of myasthenia gravis following plasma-exchange. Lancet 1976/II, 1373–1376CrossRefGoogle Scholar
  64. Pirskanen, R.: On the significance of HL-A and LD antigens in myasthenia gravis. Ann. N.Y. Acad. Sci. 274, 451–460 (1976)PubMedCrossRefGoogle Scholar
  65. Prives, J., Hoffman, L.: Regulation of acetylcholine receptor biosynthesis and degradation during differentiation of muscle cells in culture. Isr. J. Med. Sci. (in press) (1978)Google Scholar
  66. Prives, J., Silman, I., Amsterdam, A.: Appearance and disappearance of acetylcholine recep. tor during differentiation of chick skeletal muscle in vitro. Cell 7, 543–550 (1976)Google Scholar
  67. Prives, J., Hoffman, L., Amsterdam, A., Tarrab-Hazdai, R., Fuchs, S.: Ligand-induced changes in stability and distribution of acetylcholine receptors on surface membranes of muscle cells in culture. (Submitted for publication) (1978)Google Scholar
  68. Raftery, M.A., Vandlen, R.L., Reed, K.L., Lee, T.: Characterization of Torpedo californica acetylcholine receptor: Its subunit composition and ligand-binding properties. ColdGoogle Scholar
  69. Ramshaw, I.A., Bretscher, P.A., Parish, C.R.: Regulation of the immune response. II Repressor T cells in cyclophosphamide induced tolerant mice. Eur. J. Immunol 7, 180–185 (1977)PubMedCrossRefGoogle Scholar
  70. Richman, D.P., Patrick, I., Arnason B.G.W.: Cellular immunity in myasthenia gravis: response to purified acetylcholine receptor and autologous thymocytes. N. Eng!. J. Med. 294, 694–698 (1976)PubMedCrossRefGoogle Scholar
  71. Schmidt-Sole, I., Tarrab-Hazdai, R., Fuchs, S.: Immunologic and physiologic activity of polyalanyl acetylcholine receptor. Isr. J. Med. Sci. 13, 1043 (1977)Google Scholar
  72. Schwartz, M., Lancet, D., Tarrab-Hazdai, R., Fuchs, S.: Effect of azathioprine on the affinity of antibodies against acetylcholine receptor: analysis with purified antibodies. (Submitted to publication) (1978 a)Google Scholar
  73. Schwartz, M., Novick, D., Givol, D., Fuchs, S.: Induction of anti-idiotypic antibodies by immunization with syngeneic spleen cells educated with acetylcholine receptor. Nature 273, 543–545 (1978b)PubMedCrossRefGoogle Scholar
  74. Seybold, M.E., Drachman, D.B.: Gradually increasing doses of prednisone in myasthenia gravis: reducing the hazards of treatment. N. Eng!. J. Med. 290, 81 –84 (1974)Google Scholar
  75. Simpson, I.A.: Myasthenia gravis: a new hypothesis. Scot. Med. J. 5, 419–436 (1960)Google Scholar
  76. Sugiyama, H., Benda, P., Meunier, I.C., Changeux, I.P.: Immunological characterization of the cholinergic receptor protein from Electrophorus electricus. F.E.B.S. Lett. 35, 124–128 (1973)Google Scholar
  77. Tarrab-Hazdai, R., Aharonov, A., Abramsky, D., Silman, I., Fuchs, S.: Animal model for myasthenia gravis: acetylcholine receptor-induced myasthenia in rabbits, guinea pigs and monkeys. Isr. J. Med. Sci. 11, 1390 (1975 a)Google Scholar
  78. Tarrab-Hazdai, R., Aharonov, A., Abmsky, D., Yaar, I., Fuchs, S.: Passive transfer of experimental autoimmune myasthenia by lymph node cells in inbred guinea pigs. J. Exp. Med. 142, 785–789 (1975b)Google Scholar
  79. Tarrab-Hazdai, R., Aharonov, A., Silman, I., Fuchs, S., Abramsky, D.: Experimental autoimmune myasthenia gravis induced in monkeys by purified acetylcholine receptor. Nature 256, 128–130 (1975 c)Google Scholar
  80. Tarrab-Hazdai, R., Abramsky, D., Fuchs, S.: Immunosuppression of experimental autoimmune myasthenia gravis by azathioprine II. Evaluation of immunological mechanism. J. Immunol 119, 702– 706 (1977 a)Google Scholar
  81. Tarrab-Hazdai, R., Schwartz, M., Fuchs, S.: Immunological mechanism of the immunosuppressive treatment of experimental autoimmune myasthenia gravis. Isr. J. Med. Sci. 13, 1043 (l977b)Google Scholar
  82. Tarrab-Hazdai, R., Geiger, B., Fuchs, S., Amsterdam, A.: Localization of acetylcholine receptor in excitable membrane from the electric organ of Torpedo: Evidence for exposure of receptor antigenic sites on both sides of the membrane. Proc. NatlAcad. Sci. U.S.A. 75, 2497–2501 (1978 a)Google Scholar
  83. Tarrab-Hazdai, R., Yaffe, D., Fuchs, S.: Destructive effect of macro phages from acetylcholine receptor sensitized animals on muscle cell cultures. Isf. J. Med. Sci. (in press) (l978b)Google Scholar
  84. Toyka, K. v., Drachman, D.B., Griffin, D.E., Pestronk, A., Winkelstein, I.A., Fischbeck, K.H., Kao, I.: Myasthenia gravis: Study of humoral immune mechanisms by passive transfer to mice. N. Eng!. J. Med. 296, 125–131 (1977)Google Scholar
  85. Warmolts, I.R., Engel, W.K.: Benefit from alternative day prednisone in myasthenia gravis. N. Eng!. J. Med. 286, 12–20 (1972)Google Scholar
  86. Wekerle, H., Ketelsen, U.P.: Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet 1977//, 678–680Google Scholar
  87. Wekerle, H., Paterson, B., Ketelsen, U.P., Feldman, M.: Striated muscle fibers differentiate in monolayer cultures of adult thymus reticulum. Nature 256, 493–494 (1975)PubMedCrossRefGoogle Scholar
  88. Yaffe, D.: Rat skeletal muscle cells in Tissue Culture. In: Methods and Application. Kruse, P.F., Patterson, M.K. (eds.) New York: Academic Press 1973, pp. 106–114Google Scholar
  89. Zurn, A.D., Fulpius, B. W.: Study of two different subpopulations of antiacetylcholine receptor antibodies in a rabbit with experimental autoimmune myasthenia gravis. Eur. J. Immunol 8, 529–532 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Sara Fuchs
    • 1
  1. 1.Department of Chemical ImmunologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations