• E. G. Erdös
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 25 / 1)


Since publication of the previous edition of this Handbook in 1970, much new information has been gathered about kininases, the enzymes that inactivate kinins. This chapter provides a survey and update of research on kininases and enzymes that convert longer kinin peptides to the nonapeptide, bradykinin.


Angiotensin Converting Enzyme Converting Enzyme Brush Border Hippuric Acid Plasma Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerly, J. A, Tsai, B.-S, Peach, M.J.: Role of converting enzyme in the responses of rabbit atria, aortas, and adrenal zona glomerulosa to (des-Asp1)angiotensin I. Circ. Res. 41, 231–238 (1977)PubMedCrossRefGoogle Scholar
  2. Aiken, J.W, Vane, J.R.: The renin-angiotensin system: inhibition of converting enzyme in isolated tissues. Nature 228, 30–34 (1970)PubMedCrossRefGoogle Scholar
  3. Aiken, J.W, Vane, J.R.: Inhibition of converting enzyme of the renin-angiotensin system in kidneys and hindlegs of dogs. Circ. Res. 30, 263–273 (1972)PubMedCrossRefGoogle Scholar
  4. Alabaster, V.A, Bakhle, Y.S.: Converting enzyme and bradykininase in the lung. Circ. Res. 30/31, Suppl. II, 11–72–11–84 (1972a)Google Scholar
  5. Alabaster, V. A, Bakhle, Y. S.: The inactivation of bradykinin in the pulmonary circulation of isolated lungs. Br. J. Pharmacol. 45, 299–310 (1972b)Google Scholar
  6. Alabaster, V.A, Bakhle, Y.S.: The bradykininase activities of extracts of dog lung. Br. J. Pharmacol. 47, 799–807 (1973)PubMedCrossRefGoogle Scholar
  7. Angus, C.W, Lee, H.-J, Wilson, I.B.: Substrate specificity of hog plasma angiotensinconverting enzyme. Biochim. Biophys. Acta 309, 169–174 (1973)PubMedCrossRefGoogle Scholar
  8. Ashutosh, K, Keighley, J.F.H.: Diagnostic value of serum angiotensin converting enzyme activity in lung diseases. Thorax 31, 552–557 (1976)PubMedCrossRefGoogle Scholar
  9. Ayers, C. R, Vaughan, E.D, Yancey, M.R, Bing, K.T, Johnson, C.G, Morton, C.: Effect of 1-sarcosine-8-alanine angiotensin II and converting enzyme inhibitor on renin release in dog acute renovascular hypertension. Circ. Res. 34/35, Suppl. I, 1–27–1–33 (1974)Google Scholar
  10. Back, N, Steger, R.: Kinin-destroying (kininase) activity of cultured rodent fibroblasts L-929. Proc. Soc. Exp. Biol. Med. 153, 175–179 (1976)PubMedGoogle Scholar
  11. Bailie, M.D, Barbour, J.A.: Effect of inhibition of peptidase activity on distribution of intrarenal blood flow. Am. J. Physiol. 228, 850–853 (1975)PubMedGoogle Scholar
  12. Bakhle, Y. S.: Conversion of angiotensin I to angiotensin II by cell-free extracts of dog lung. Nature 220, 919–921 (1968)PubMedCrossRefGoogle Scholar
  13. Bakhle, Y.S.: Inhibition of angiotensin I converting enzyme by venom peptides. Br. J. Pharmacol. 43, 252–254 (1971)PubMedCrossRefGoogle Scholar
  14. Bakhle, Y.S.: Converting enzyme in vitro measurement and properties. In: Handbook of Experimental Pharmacology. Page, I.H, Bumpus, F.M. (eds.), Vol. XXXVII pp. 41–80. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  15. Bakhle, Y.S.: Pulmonary metabolism of bradykinin analogues and the contribution of angiotensin converting enzyme to bradykinin inactivation in isolated lungs. Br. J. Pharmacol. 159, 123–128 (1977)CrossRefGoogle Scholar
  16. Bakhle, Y. S, Reynard, A. M.: Characteristics of the angiotensin I converting enzyme from dog lung. Nature New Biol. 229, 187–189 (1971)PubMedCrossRefGoogle Scholar
  17. Bakhle, Y.S, Vane, J.R.: Pharmacokinetic function of the pulmonary circulation. Physiological Rev. 54, 1007–1045 (1974)Google Scholar
  18. Barrett, J.D, Sambhi, M.P.: Pulmonary activation and degradation of angiotensin I: a dual enzyme system. Res. Commun. Chem. Pathol. Pharmacol. 2, 128–145 (1971)PubMedGoogle Scholar
  19. Bedrossian, C.W.M, Woo, J, Miller, W.C, Cannon, D.C: Decreased angiotensin-converting enzyme in the adult respiratory distress syndrome. Am. J. Clin. Pathol. 70, 244–247 (1978)PubMedGoogle Scholar
  20. Bengis, R.G, Coleman, T.G, Young, D.B, McCaa, R.E.: Long-term blockade of angiotensin formation in various normotensive and hypertensive rat models using converting enzyme inhibitor (SQ 14225). Circ. Res. 43, Suppl. I, I45–I53 (1978)Google Scholar
  21. Benuck, M, Marks, N.: Subcellular localization and partial purification of a chloride dependent angiotensin-I converting enzyme from rat brain. J. Neurochem. 30, 729–734 (1978)PubMedCrossRefGoogle Scholar
  22. Bianchi, A, Evans, D.B, Cobb, M, Peschka, M.T, Schaeffer, T.R, Laffan, R.J.: Inhibition by SQ 20881 of vasopressor response to angiotensin I in conscious animals. Eur. J. Pharmacol. 23, 90–96 (1973)PubMedCrossRefGoogle Scholar
  23. Bielawiec, M, Bogdanikowa, B, Kiersnowska-Rogowska, B, Lukjan, H.: Studies on the kininogenic system in the supernatant of leukocyte cultures. Arch. Immunol. Ther. Exp. 22, 369–373 (1974)Google Scholar
  24. Bing, J, Poulsen, K, Markussen, J.: The ability of various insulins and insulin fragments to inhibit the angiotensin I converting enzyme. Acta Pathol. Microbiol. Scand. [A] 82, 777–782 (1974)Google Scholar
  25. Biron, P, Campeau, L, David, P.: Fate of angiotensin I and II in the human pulmonary circulation. Am. J. Cardiol. 24, 544–547 (1969)PubMedCrossRefGoogle Scholar
  26. Biron, P, Campeau, L.: Pulmonary and extrapulmonary fate of angiotensin I. Rev. Can. Biol. 30, 27–34 (1971)PubMedGoogle Scholar
  27. Biron, P, Huggins, C.G.: Pulmonary activation of synthetic angiotensin I. Life Sci. 7, 965–970 (1968)PubMedCrossRefGoogle Scholar
  28. Blair-West, J.R, Coghlan, J.P, Denton, D.A, Funder, J.W, Scoggins, B.A, Wright, R.D.: The effect of the heptapeptide (2–8) and hexapeptide (3–8) fragments of angiotensin II on aldosterone secretion. J. Clin. Endocrinol. Metab. 32, 575–578 (1971)PubMedCrossRefGoogle Scholar
  29. Boaz, D, Wyatt, S, Fitz, A.: Angiotensin I (Phe8-His9) hydrolase — studies with renin substrates. Biochem. Biophys. Res. Commun. 63, 490–495 (1975)PubMedCrossRefGoogle Scholar
  30. Bokisch, V.A, Muller-Eberhard, H.J, Cochrane, C.G.: Isolation of a fragment (C3a) of the third component of human complement containing anaphylatoxin and chemotactic activity and description of an anaphylatoxin inactivator of human serum. J. Exp. Med. 129, 1109–1130 (1969)PubMedCrossRefGoogle Scholar
  31. Bokisch, V.A, Muller-Eberhard, H.J.: Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J. Clin. Invest. 49, 2427–2436 (1970)PubMedCrossRefGoogle Scholar
  32. Borges, D.R, Prado, J.L, Guimaraes, J.A.: Characterization of a kinin-converting arylaminopeptidase from human liver. N.S. Arch. Pharmacol. 281, 403–414 (1974)CrossRefGoogle Scholar
  33. Borges, D.R, Limaos, E.A, Prado, J.L, Camargo, A.CM.: Catabolism of vasoactive polypeptides by perfused rat liver. N.S. Arch. Pharmacol. 295, 33–40 (1976)CrossRefGoogle Scholar
  34. Boucher, R, Asselin, J, Genest, J.: A new enzyme leading to the direct formation of angiotensin II. Circ. Res. 34/35, Suppl. I, I–203–I–209 (1974)Google Scholar
  35. Brandi, C.M., Prado, E.S, Prado, M.J.B.A, Prado, J.L.: Kinin-converting aminopeptidase from human urine partial purification and properties. Int. J. Biochem. 7, 335–341 (1976)CrossRefGoogle Scholar
  36. Brantner, H.: Enzymuntersuchungen an einem onkolytisch wirkenden Clostridium-Stamm (CI. butyricum-Stamm M55). Zentralbl. Bakteriol. [Orig. A] 220, 432–434 (1972)Google Scholar
  37. Brecher, P.I, Tercyak, A, Gavras, H, Chobanian, A.V.: Angiotensin-converting enzyme activity in cerebral micro vessels. Fed. Proc. 37, 603 (1978)Google Scholar
  38. Britton, S, Di Salvo, J.: Effects of angiotensin I and angiotensin II on hindlimb and coronary vascular resistance. Am. J. Physiol. 225, 1226–1231 (1973)PubMedGoogle Scholar
  39. Caldwell, P.R.B, Seegal, B.C., Hsu, K.C, Das, M, Soffer, R.L.: Angiotensin-converting enzyme: vascular endothelial localization. Science 191, 1050–1051 (1976a)CrossRefGoogle Scholar
  40. Caldwell, P.R.B, Wigger, H.J, Das, M, Soffer, R.L.: Angiotensin-converting enzyme: effect of antienzyme antibody in vivo. FEBS Letters 63, 82–84 (1976b)CrossRefGoogle Scholar
  41. Camargo, A.C.M., Graeff, F.G.: Subcellular distribution and properties of the bradykinin inactivation system in rabbit brain homogenates. Biochem. Pharmacol. 18, 548–549 (1969)PubMedCrossRefGoogle Scholar
  42. Camargo, A.C.M., Ramalho-Pinto, F.J, Greene, L.J.: Brain peptidases: conversion and inactivation of kinin hormones. J. Neurochem. 19, 37–49 (1972)PubMedCrossRefGoogle Scholar
  43. Camargo, A.C.M., Shapanka, R, Greene, L.J.: Preparation, assay, and partial characterization of a neutral endopeptidase from rabbit brain. Biochemistry 12, 1838–1844 (1973)PubMedCrossRefGoogle Scholar
  44. Carmel, A, Yaron, A.: An intramolecularly quenched fluorescent tripeptide as a fluorogenic substrate of angiotensin-I-converting enzyme and of bacterial dipeptidyl carboxypeptidase. Eur. J. Biochem. 87, 265–273 (1978)PubMedCrossRefGoogle Scholar
  45. Carone, F.A, Pullman, T.N, Oparil, S, Nakamura, S.: Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubule. Am. J. Physiol. 230, 1420–1424 (1976)PubMedGoogle Scholar
  46. Carriere, S, Biron, P.: Effect of angiotensin I on intrarenal blood flow distribution. Am. J. Physiol. 219, 1642–1646 (1970)PubMedGoogle Scholar
  47. Case, D.B, Wallace, J.M, Keim, H.J, Weber, M. A, Drayer, J.I.M, White, R.P, Sealey, J.E, Laragh, J.H.: Estimating renin participation in hypertension: superiority of converting enzyme inhibitor over saralasin. Am. J. Med. 61, 790–796 (1976)PubMedCrossRefGoogle Scholar
  48. Case, D.B, Wallace, J.M, Keim, H.J, Weber, M. A, Sealey, J.E, Laragh, J.H.: Possible role of renin in hypertension as suggested by renin-sodium profiling and inhibition of converting enzyme. N. Engl. J. Med. 296, 641–646 (1977)PubMedCrossRefGoogle Scholar
  49. Cheung, H.S, Cushman, D.W.: Inhibition of homogeneous angiotensin-converting enzyme of rabbit lung by synthetic venom peptides of Bothrops jararaca. Biochim. Biophys. Acta 293, 451–463 (1973)PubMedCrossRefGoogle Scholar
  50. Chiu, A.T, Ryan, J.W, Stewart, J.M, Dorer, F.E.: Formation of angiotensin III by angiotensin-converting enzyme. Biochem. J. 155, 189–192 (1976)PubMedGoogle Scholar
  51. Cicilini, M.A, Caldo, H, Berti, J.D, Camargo, A.CM.: Rabbit tissue peptidases that hydrolyse the peptide hormone bradykinin. Biochem. J. 163, 433–439 (1977)PubMedGoogle Scholar
  52. Collier, J.G, Robinson, B.F, Vane, J.R.: Reduction of pressor effects of angiotensin I in man by synthetic nonapeptide (B.P.P. or SQ 20,881) which inhibits converting enzyme. Lancet 1, 72–74 (1973)PubMedCrossRefGoogle Scholar
  53. Collier, J.G, Robinson, B.F.: Comparison of effects of locally infused angiotensin I and II on hand veins and forearm arteries in man: evidence for converting enzyme activity in limb vessels. Clin. Sci. Mol. Med. 47, 189–192 (1974)PubMedGoogle Scholar
  54. Conroy, J.M, Hartley, J.L, Soffer, R.L.: Canine pulmonary angiotensin-converting enzyme physicochemical, catalytic and immunological properties. Biochim. Biophys. Acta 524, 403–412 (1978)PubMedCrossRefGoogle Scholar
  55. Conroy, J.M, Hoffman, H, Kirk, E. S, Hirzel, H.O, Sonnenblick, E.H, Soffer, R.L.: Pulmonary angiotensin-converting enzyme. Interspecies homology and inhibition by heterologous antibody in vivo. J. Biol. Chem. 251, 4828–4832 (1976)PubMedGoogle Scholar
  56. Conroy, J.M, Lai, C.Y.: A rapid and sensitive fluorescence assay for angiotensin-converting enzyme. Anal. Biochem. 87, 556–561 (1978)PubMedCrossRefGoogle Scholar
  57. Corbin, N.C, Hugli, T.E, Muller-Eberhard, H.J.: Serum carboxypeptidase B: a spectrophotometric assay using protamine as substrate. Anal. Biochem. 73, 41–51 (1976)PubMedCrossRefGoogle Scholar
  58. Cushman, D.W, Cheung, H.S.: A simple substrate for assay of dog lung angiotensin converting enzyme. Fed. Proc. 28, 799 (1969)Google Scholar
  59. Cushman, D.W, Cheung, H.S.: Concentrations of angiotensin-converting enzyme in tissues of the rat. Biochim. Biophys. Acta 250, 261–265 (1971a)CrossRefGoogle Scholar
  60. Cushman, D.W, Cheung, H.S.: Spectrophotometric assay and properties of the angiotensinconverting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637–1648 (1971b)CrossRefGoogle Scholar
  61. Cushman, D.W, Cheung, H.S.: Studies in vitro of angiotensin-converting enzyme of lung and other tissues. In: Hypertension’ 72. Genest, J, Koiw, E. (eds.), pp. 532–541. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  62. Cushman, D.W, Pluscec, J, Williams, N.J, Weaver, E.R, Sabo, E.F, Kocy, O, Cheung, H.S, Ondetti, M. A.: Inhibition of angiotensin-converting enzyme by analogs of peptides from Bothrops jararaca venom. Experientia 29, 1032–1035 (1973)PubMedCrossRefGoogle Scholar
  63. Cushman, D.W, Cheung, H.S, Sabo, E.F, Ondetti, M.A.: Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16, 5484–5491 (1977)PubMedCrossRefGoogle Scholar
  64. Damas, J.: L’activite kininasique du liquide cephalo-rachidien de l–Homme, in vitro. C.R. Soc. Biol. 163, 2478–2483 (1969)Google Scholar
  65. Das, M, Hartley, J.L, Soffer, R.L.: Serum angiotensin-converting enzyme. Isolation and relationship to the pulmonary enzyme. J. Biol. Chem. 252, 1316–1319 (1977)PubMedGoogle Scholar
  66. Das, M, Soffer, R.L.: Pulmonary angiotensin-converting enzyme. Structural and catalytic properties. J. Biol. Chem. 250, 6762–6768 (1975)PubMedGoogle Scholar
  67. Das, M, Soffer, R.L.: Pulmonary angiotensin-converting enzyme antienzyme antibody. Biochemistry 15, 5088–5094 (1976)PubMedCrossRefGoogle Scholar
  68. Dearnley, C.N, Bailey, G.S.: Subcellular distribution of kininase activity in pig liver. Biochem. Soc. Transact. 4, 697–698 (1976)Google Scholar
  69. Dedichen, J, Vystyd, J.: Kininase activity of plasma from patients with arteriosclerosis, diabetes and hepatitis. Scand. J. Clin. Lab. Invest. 107, 125–127 (1969)Google Scholar
  70. Delhaye, C, Reuse, J.J, Driessche, R.V.: Presence du systeme bradykininogene — bradykinine — bradykininase dans le liquide amniotique humain. Arch. Int. Pharmacodyn. Ther. 179, 486–489 (1969)PubMedGoogle Scholar
  71. Depierre, D, Bargetzi, J.-P, Roth, M.: Dipeptidyl carboxypeptidase from human seminal plasma. Biochim. Biophys. Acta. 523, 469–476 (1978)PubMedCrossRefGoogle Scholar
  72. Depierre, D, Roth, M.: Activity of a dipeptidyl carboxypeptidase (Angiotensin converting enzyme) in lungs of different animal species. Experientia 28, 154 (1972)CrossRefGoogle Scholar
  73. Depierre, D, Roth, M.: Fluorimetric determination of dipeptidyl carboxypeptidase (angiotensin-I-converting enzyme). Enzyme 19, 65–70 (1975)PubMedGoogle Scholar
  74. Disalvo, J, Britton, S, Galvas, P, Sanders, T.W.: Effects of angiotensin I and angiotensin II on canine hepatic vascular resistance. Circ. Res. 32, 85–92 (1973)CrossRefGoogle Scholar
  75. Disalvo, J, Peterson, A, Montefusco, C, Menta, M.: Intrarenal conversion of angiotensin I to angiotensin II in the dog. Circ. Res. 29, 398–406 (1971)CrossRefGoogle Scholar
  76. Donaldson, V. H.: Bradykinin inactivation by rabbit serum and butylated hydroxyanisole. J. Appl. Physiol. 35, 880–883 (1973)PubMedGoogle Scholar
  77. Dorer, F.E, Skeggs, L.T, Kahn, J.R, Lentz, K.E, Levine, M.: Angiotensin converting enzyme: Method of assay and partial purification. Anal. Biochem. 33, 102–113 (1970)PubMedCrossRefGoogle Scholar
  78. Dorer, F.E, Kahn, J.R, Lentz, K.E, Levine, M, Skeggs, L.T.: Purification and properties of angiotensin-converting enzyme from hog lung. Circ. Res. 31, 356–366 (1972)PubMedCrossRefGoogle Scholar
  79. Dorer, F.E, Kahn, J.R, Lentz, K.E, Levine, M, Skeggs, L.T.: Hydrolysis of bradykinin by angiotensin-converting enzyme. Circ. Res. 34, 824–827 (1974a)CrossRefGoogle Scholar
  80. Dorer, F.E, Kahn, J.R, Lentz, K.E, Levine, M, Skeggs, L.T.: Formation of angiotensin II from tetradecapeptide renin substrate by angiotensin-converting enzyme. Biochem. Pharmacol. 24, 1137–1139 (1975)PubMedCrossRefGoogle Scholar
  81. Dorer, F.E, Kahn, J.R, Lentz, K.E, Levine, M, Skeggs, L.T.: Kinetic properties of pulmonary angiotensin-converting enzyme. Hydrolysis of hippurylglycylglycine. Biochim. Biophys. Acta 429, 220–228 (1976)PubMedCrossRefGoogle Scholar
  82. Dorer, F.E, Ryan, J.W, Stewart, J.M.: Hydrolysis of bradykinin and its higher homologues by angiotensin-converting enzyme. Biochem. J. 141, 915–917 (1974b)Google Scholar
  83. Druilhet, R.E, Overturf, M, Kirkendall, W.M.: Action of a human plasma fraction on tetradecapeptide, angiotensin I and angiotensin II. Life Sci. 20, 1213–1226 (1977)PubMedCrossRefGoogle Scholar
  84. Edery, H.: Sensitization of smooth muscle to the action of plasma kinins by chymotrypsin. In: Hypotensive peptides. Erdös, E.G., Back, N, Sicuteri, F. (eds.), pp.341–343. New York: Springer 1966CrossRefGoogle Scholar
  85. Elisseeva, Y.E, Orekhovich, V. N, Pavlikhina, L.V, Alexeenko, L.P.: Carboxycathepsin-A key regulatory component of two physiological systems involved in regulation of blood pressure. Clin. Chim. Acta 31, 413–419 (1971)PubMedCrossRefGoogle Scholar
  86. Elisseeva, J.J, Orekhovich, V.N, Pavlikhina, L.V.: Properties and specificity of carboxycathepsin (peptidyl-dipeptidase) from bovine kidney. Voprosy Med. Khimii. 22, 81–89 (1974a)Google Scholar
  87. Elisseeva, Y.E, Orekhovich, V.N, Pavlikhina, L.V.: Isolation and properties of carboxycathepsin (peptidyl-dipeptidase) from bovine lung tissue. Biochemistry (Trans, of Biokhimiya) 41, 417–122 (1976)Google Scholar
  88. Elisseeva, Y.E, Pavlikhina, L.V, Orekhovich, V.N.: Isolation of carboxycathepsin (peptidyl dipeptidase from beef kidneys. Doklady Akademii Nauk SSSR 217, 953–956 (1974b)Google Scholar
  89. Engel, S.L, Schaeffer, T.R, Gold, B.I, Rubin, B.: Inhibition of pressor effects of angiotensin I and augmentation of depressor effects of bradykinin by synthetic peptides. Proc. Soc. Exp. Biol. Med. 140, 240–244 (1972)PubMedGoogle Scholar
  90. Engel, S.L, Schaeffer, T.R, Waugh, M.H, Rubin, B.: Effects of the nonapeptide SQ 20881 on blood pressure of rats with experimental renovascular hypertension. Proc. Soc. Exp. Biol. Med. 143, 483–487 (1973)PubMedGoogle Scholar
  91. Epstein, A.N, Simpson, J.B.: The dipsogenic action of angiotensin. Acta Physiol. Lat. Am. 24, 405–409 (1974)Google Scholar
  92. Erdös, E.G.: Enzymes that inactivate polypeptides. In: Metabolic Factors Controlling Duration of Drug Action. Brodie, B.B, Erdös, E.G. (eds.), pp. 159–178. New York: Pergamon Press 1962Google Scholar
  93. Erdös, E.G.: Urinary kinin and colostrokinin. In: Handbook of Experimental Pharmacology. Erdös, E.G. (ed.), Vol. XXV, pp.579–584. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  94. Erdös, E.G.: Angiotensin I converting enzyme. (Brief review.) Circ. Res. 36, 247–255 (1975)CrossRefGoogle Scholar
  95. Erdös, E.G.: The kinins — A status report. Biochem. Pharmacol. 25, 1563–1569 (1976a)CrossRefGoogle Scholar
  96. Erdös, E.G.: Conversion of angiotensin I to angiotensin II. Am. J. Med. 60, 749–759 (1976b)CrossRefGoogle Scholar
  97. Erdös, E.G.: The angiotensin I converting enzyme. Fed. Proc. 36, 1760–1768 (1977)PubMedGoogle Scholar
  98. Erdös, E.G., Johnson, A.R, Boyden, N.T.: Inactivation of enkephalins: effect of purified peptidyl dipeptidase and cultured human endothelial cells. “Endorphins”. In: Advances in biochemical psychopharmacology. Costa, E, Trabucchi, M. (eds.), Vol. 18, pp. 45–49. New York: Raven Press 1978aGoogle Scholar
  99. Erdös, E.G., Johnson, A.R, Boyden, N.T.: Hydrolysis of enkephalin by cultured human endothelial cells and by purified peptidyl dipeptidase. Biochem. Pharm. 27, 843–848 (1978b)CrossRefGoogle Scholar
  100. Erdös, E.G., Johnson, A.R, Robinson, C.J.G.: Release of angiotensin I converting enzyme from the shocked rat lung. Circulation 52,11–88 (1975)Google Scholar
  101. Erdös, E.G., Marinkovic, D.M, Ward, P.E, Mills, I.H.: Characterization of urinary kininase. Fed. Proc. 31, 657 (1978c)Google Scholar
  102. Erdös, E.G., Massion, W.H, Downs, D.R, Geese, A.: Effect of angiotensin I converting enzyme inhibitor in shock. Proc. Soc. Exp. Biol. Med. 145, 948–951 (1974)PubMedGoogle Scholar
  103. Erdös, E.G., Nakajima, T, Oshima, G, Geese, A, Kato, J.: Kininases and their interaction with other systems. In: Chemistry and Biology of the Kallikrein-kinin System in Health and Disease. Pisano, J.F, Austen, K.F. (eds.). DHEW Publication No. NIH 76-791, pp. 277–285 (1976)Google Scholar
  104. Erdös, E.G., Renfrew, A. G, Sloane, E. M, Wohler, J. R.: Enzymatic studies on bradykinin and similar peptides. Ann. N.Y. Acad. Sci. 104, 222–234 (1963)CrossRefGoogle Scholar
  105. Erdös, E.G., Sloane, E. M.: An enzyme in human blood plasma that inactivates bradykinin and kallidins. Biochem. Pharmacol. 11, 585–592 (1962)PubMedCrossRefGoogle Scholar
  106. Erdös, E.G., Wohler, I.M, Levine, M.I, Westerman, M.P.: Carboxypeptidase in blood and other fluids. Values in human blood in normal and pathological conditions. Clin. Chim. Acta. 11, 39–43 (1965)CrossRefGoogle Scholar
  107. Erdös, E.G., Yang, H.Y.T.: Inactivation and potentiation of the effects of bradykinin. In: Hypotensive peptides. Erdös, E.G., Back, B, Sicuteri, F. (eds.), pp.235–250. Berlin, Heidelberg, New York: Springer 1966CrossRefGoogle Scholar
  108. Erdös, E.G., Yang, H.Y.T.: An enzyme in microsomal fraction of kidney that inactivates bradykinin. Life Sci. 6, 569–574 (1967)PubMedCrossRefGoogle Scholar
  109. Erdös, E.G., Yang, H.Y.T, Tague, L.L, Manning, N.: Carboxypeptidase in blood and other fluids. III. The esterase activity of the enzyme. Biochem. Pharmacol. 16, 1287–1297 (1967)PubMedCrossRefGoogle Scholar
  110. Erdös, E.G., Yang, H.Y.T.: Kininases. In: Handbook of Experimental Pharmacology. Erdös, E.G. (ed.), Vol. XXV, pp.289–323. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  111. Errington, M.L, RochaeSilva, M.: On the role of vasopressin and angiotensin in the development of irreversible haemorrhagic shock. J. Physiol. 242, 119–141 (1974)PubMedGoogle Scholar
  112. Fanburg, B.L, Schoenberger, M.D, Bachus, B, Snider, G.L.: Elevated serum angiotensin I converting enzyme in sarcoidosis. Am. Rev. Resp. Dis. 114, 525–528 (1976)PubMedGoogle Scholar
  113. Ferguson, R.K, Brunner, H.R, Turini, G.A, Gavras, H, McKinstry, D.N.: A specific orally active inhibitor of angiotensin-converting enzyme in man. Lancet 1, 775–778 (1977)PubMedCrossRefGoogle Scholar
  114. Fernandez, H.N, Hugli, T.E.: Partial characterization of human C5a anaphylatoxin. I. Chemical description of the carbohydrate and polypeptide portions of human C5a. J. Immunol. 117, 1688–1694 (1976)PubMedGoogle Scholar
  115. Ferreira, S.H.: A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br. J. Pharmacol. 24, 163–169 (1965)Google Scholar
  116. Ferreira, S.H.: Bradykinin-potentiating factor. In: Hypotensive Peptides. Erdös, E.G., Back, N, Sicuteri, F. (eds.), pp.356–367. New York: Springer 1966CrossRefGoogle Scholar
  117. Ferreira, S.H, Bartelt, D.C, Greene, L.J.: Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9, 2583–2593 (1970)PubMedCrossRefGoogle Scholar
  118. Ferreira, S.H, Vane, J.R.: The disappearance of bradykinin and eledoisin in the circulation and vascular beds of the cat. Br. J. Pharmacol. Chemother. 30, 417–424 (1967)PubMedCrossRefGoogle Scholar
  119. Filipovic, N, Mijanovic, M, Igic, R.: A simple spectrophotometric method for estimation of plasma angiotensin I converting enzyme activity. Clin. Chim. Acta 88, 173–175 (1978)PubMedCrossRefGoogle Scholar
  120. Fitz, A, Overturf, M.: Molecular weight of human angiotensin I lung converting enzyme. J. Biol. Chem. 247, 581–584 (1972)PubMedGoogle Scholar
  121. Fitz, A, Wyatt, S, Boaz, D, Fox, B.: Peptide inhibitors of converting enzyme. Life Sci. 21, 1179–1186 (1977)PubMedCrossRefGoogle Scholar
  122. Folk, J.E, Piez, K. A, Carroll, W.R, Gladner, J. A.: Carboxypeptidase B. IV. Purification and characterization of the porcine enzyme. J. Biol. Chem. 235, 2272–2277 (1960)PubMedGoogle Scholar
  123. Franklin, W.G, Peach, M.J, Gilmore, J.P.: Evidence for the renal conversion of angiotensin I in the dog. Circ. Res. 27, 321–324 (1970)PubMedCrossRefGoogle Scholar
  124. Freer, R.J, Stewart, J.M.: In vivo pulmonary metabolism of bradykinin, angiotensin I and 5-hydroxytryptamine in the rat. Arch. Int. Pharmacodyn. Ther. 217, 97–109 (1975)PubMedGoogle Scholar
  125. Frey, E.K, Kraut, H, Werle, E, Vogel, R, Zickgraf-Rudel, G, Trautschold, I.: Das Kallikrein-Kinin-System und seine Inhibitoren. Stuttgart: Enke 1968Google Scholar
  126. Friedland, J, Silverstein, E.: Similarity in some properties of serum angiotensin converting enzyme from sarcoidosis patients and normal subjects. Biochem. Med. 15, 178–185 (1976)PubMedCrossRefGoogle Scholar
  127. Friedland, J, Silverstein, E.: Sensitive fluorimetric assay for serum angiotensin-converting enzyme with the natural substrate angiotensin I. Am. J. Clin. Pathol. 68, 225–228 (1977)PubMedGoogle Scholar
  128. Friedland, J, Setton, C, Silverstein, E.: Angiotension converting enzyme: induction by steroids in rabbit alveolar macrophages in culture. Science 197, 64–65 (1977)PubMedCrossRefGoogle Scholar
  129. Friedland, J, Silverstein, E.: Angiotensin converting enzyme (ACE): apparent identity of rabbit macrophage and lung enzymes and proteolytic processing of predominant large cellular to small extracellular form. Fed. Proc. 37, 1332 (1978)Google Scholar
  130. Friedland, J, Setton, C, Silverstein, E.: Induction of angiotensin converting enzyme in human monocytes in culture. Biochem. Biophys. Res. Commun. 83, 843–849 (1978)PubMedCrossRefGoogle Scholar
  131. Friedli, B, Biron, P, Fouron, J.-C, Davignon, A.: Conversion of angiotensin I in pulmonary and systemic vascular beds of children. Acta Paediatr. Scand. 63, 17–22 (1974)PubMedCrossRefGoogle Scholar
  132. Friedli, B, Kent, G, Olley, P. M.: Inactivation of bradykinin in the pulmonary vascular bed of newborn and fetal lambs. Circ. Res. 33, 421–427 (1973)PubMedCrossRefGoogle Scholar
  133. Fujita, K, Teradaira, R, Nagatsu, T.: Bradykininase activity of aloe extract. Biochem. Pharmacol. 25, 205 (1975)CrossRefGoogle Scholar
  134. Gaponiuk, P. YA, Umarchodgaev, E. M.: The changes of plasma kininase activity in irradiated animals. Stud. Biophys. 13, 225–230 (1969)Google Scholar
  135. Gavras, H, Brunner, H.R, Laragh, J.H, Sealey, J.E, Gavras, I, Vukovich, R.A.: An angiotensin converting-enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients. N. Engl. J. Med. 291, 817–821 (1974)PubMedCrossRefGoogle Scholar
  136. Gavras, H, Brunner, H.R, Turini, G.A., Kershaw, G.R, Tifft, C P, Cuttelod, S, Gavras, I, Vukovich, R.A, McKinstry, D.N.: Antihypertensive effect of the oral angiotensin converting-enzyme inhibitor SQ 14225 in man. N. Engl. J. Med. 298, 991–995 (1978a)CrossRefGoogle Scholar
  137. Gavras, H, Gavras, I, Textor, S, Volicer, L, Brunner, H.R, Rucinska, E.J.: Effect of angiotensin converting enzyme inhibition on blood pressure, plasma renin activity and plasma aldosterone in essential hypertension. J. Clin. Endocrinol. Metabol. 46, 220–226 (1978b)CrossRefGoogle Scholar
  138. Gavras, H, Liang, C-S, Brunner, H. R.: Redistribution of regional blood flow after inhibition of the angiotensin-converting enzyme. Circ. Res. 43, Supp. I, 1–59-1-63 (1978c)CrossRefGoogle Scholar
  139. Geese, A, Lonovics, J, Zsilinszky, E, Szekeres, L.: Characteristics of the human skin bradykinin-destroying enzyme. J. Med. 2, 129–135 (1971)Google Scholar
  140. Geokas, M. C, Wollesen, F, Rinderknecht, H.: Radioimmunoassay for pancreatic carboxypeptidase B in human serum. J. Lab. Clin. Med. 84, 574–583 (1974)PubMedGoogle Scholar
  141. Gladner, J. A.: Potentiation of the effect of bradykinin. In: Hypotensive peptides. Erdös, E.G., Back, N, Sicuteri, F. (eds.), pp.344–355. New York: Springer 1966CrossRefGoogle Scholar
  142. Grandino, A, Paiva, A.CM.: Isolation of angiotensin-converting enzyme without kininase activity from hog and guinea pig plasma. Biochim. Biophys. Acta 364, 113–119 (1974)PubMedCrossRefGoogle Scholar
  143. Greene, L.J, Camargo, A.C.M., Krieger, E.M, Stewart, J.M, Ferreira, S.H.: Inhibition of the conversion of angiotensin I to II and potentiation of bradykinin by small peptides present in Bothrops jararaca venom. Circ. Res. 30/31, Suppl. II, II–62–II–71 (1972)Google Scholar
  144. Guimaraes, J.A, Borges, D.R, Prado, E.S, Prado, J.L.: Kinin-converting aminopeptidase from human serum. Biochem. Pharmacol. 22, 3157–3172 (1973)PubMedCrossRefGoogle Scholar
  145. Hall, E.R, Kato, J, Erdös, E.G., Robinson, C.J.G, Oshima, G.: Angiotensin I-converting enzyme in the nephron. Life Sci. 18, 1299–1303 (1976)PubMedCrossRefGoogle Scholar
  146. Hamberg, U, Elg, P, Stelwagen, P.: On the mechanism of bradykinin potentiation. In: Advances in Experimental Medicine and Biology. Back, N, Martini, L, Paoletti, R. (eds.), Plenum Press New York, Vol. 2, pp. 626–631, 1968Google Scholar
  147. Hayakari, M, Kondo, Y.: A rapid fluorometric assay of angiotensin-converting enzyme. Tohoku J. Exp. Med. 122, 313–320 (1977)PubMedCrossRefGoogle Scholar
  148. Hayakari, M, Kondo, Y, Izumi, H.: A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Anal. Biochem. 84, 361–369 (1978)PubMedCrossRefGoogle Scholar
  149. Hebert, F, Fouron, J.C, Boileau, J.C, Biron, P.: Pulmonary fate of vasoactive peptides in fetal, newborn, and adult sheep. Am. J. Physiol. 223, 20–23 (1972)PubMedGoogle Scholar
  150. Helmer, O. M.: Differentiation between two forms of angiotensin by means of spirally cut strips of rabbit aorta. Am. J. Physiol. 188, 571–577 (1957)PubMedGoogle Scholar
  151. Herman, C. M, Oshima, G, Erdös, E. G.: The effect of adrenocorticosteroid pretreatment on the kinin system and coagulation responses to septic shock in the baboon. J. Lab. Clin. Med. 84, 731–739 (1974)PubMedGoogle Scholar
  152. Hial, V, Gimbrone, Jr., M. A, Wilcox, G, Pisano, J.J.: Human vascular endothelium contains angiotensin I converting enzyme and renin-like activity. Fed. Proc. 35, 705 (1976)Google Scholar
  153. Hirsch, E.F, Nakajima, T, Oshima, G, Erdös, E.G., Herman, C.M.: Kinin system responses in sepsis following trauma in man. J. Surg. Res. 17, 147–153 (1974)PubMedCrossRefGoogle Scholar
  154. Hofbauer, K.G, Zschiedrich, H, Rauh, W, Gross, F.: Conversion of angiotensin I into angiotensin II in the isolated perfused rat kidney. Clin. Sci. 44, 447–456 (1973a)Google Scholar
  155. Hofbauer, K.G, Zschiedrich, H, Rauh, W, Orth, H, Gross, F.: Reaction of endogenous renin with exogenous renin substrate within the isolated perfused rat kidney. Proc. Soc. Exp. Biol. Med. 142, 796–799 (1973b)Google Scholar
  156. Hojima, Y, Moriya, H, Moriwaki, C: Bradykinin inactivating enzymes from red kidney beans (Phaseolus vulgaris) and potatoes (Solanum tÜberosum). Agric. Biol. Chem. 41, 559–565 (1977)CrossRefGoogle Scholar
  157. Hojima, Y, Tanaka, M, Moriya, H, Moriwaki, C.: Kinin-inactivating-enzymes from plants I. Partial purification of bradykinin-inactivating-enzyme from potatoes. Allergy 20, 755–762 (1971a)Google Scholar
  158. Hojima, Y, Tanaka, M, Moriya, H, Moriwaki, C.: Kinin-inactivating-enzymes from plants II. Some properties of bradykinin-inactivating-enzyme from potatoes. Allergy 20, 763–769 (1971b)Google Scholar
  159. Hopsu, V.K, Mäkinen, K.K, Glenner, G.G.: A peptidase (aminopeptidase B) from cat and guinea pig liver selective for N-terminal arginine and lysine residues. I. Purification and substrate specificity. Acta Chem. Scand. 20, 1225–1230 (1966a)CrossRefGoogle Scholar
  160. Hopsu, V. K, Mäkinen, K. K, Glenner, G. G.: A peptidase (aminopeptidase B) from cat and guinea pig liver selective for N-terminal arginine and lysine residues. II. Modifier characteristics and kinetic studies. Acta Chem. Scand. 20, 1231–1239 (1966b)CrossRefGoogle Scholar
  161. Horky, K, Rojo-Ortega, J.M, Rodriguez, J, Boucher, R, Genest, J.: Renin, renin substrate, and angiotensin I-converting enzyme in the lymph of rats. Am. J. Physiol. 220, 307–311 (1971)PubMedGoogle Scholar
  162. Huggins, C.G, Corcoran, R.J, Gordon, J.S, Henry, H.W, John, J.P.: Kinetics of the plasma and lung angiotensin I converting enzymes. Circ. Res. 26/27, Suppl. 1,1–93-1-108 (1970)Google Scholar
  163. Huggins, C.G, Thampi, N.S.: A simple method for the determination of angiotensin I converting enzyme. Life Sci. 7, 633–639 (1968)PubMedCrossRefGoogle Scholar
  164. Hugli, T.E, Vallota, E.H, Muller-Eberhard, H.J.: Purification and partial characterization of human and porcine C3a anaphylatoxin. J. Biol. Chem. 250, 1472–1478 (1975)PubMedGoogle Scholar
  165. Igic, R, Erdös, E.G., Yeh, H.S.J, Sorrells, K, Nakajima, T.: The angiotensin I converting enzyme of the lung. Circ. Res. 31,11–51-11-61 (1972a)Google Scholar
  166. Igic, R, Nakajima, T, Yeh, H.S.J, Sorrells, K, Erdös, E.G.: Kininases. In: Pharmacology and the future of man. Acheson, G.H. (ed.), Vol.5, pp. 307–319. Basel: Karger 1973Google Scholar
  167. Igic, R, Robinson, C.J.G, Erdös, E.G.: Antiotensin I converting enzyme activity in the choroid plexus and in the retina. In: Central actions of angiotensin and related hormones. Buckley, J.P, Ferrario, C.M. (eds.), pp.23–27. New York: Pergamon Press 1977Google Scholar
  168. Igic, R, Sorrells, K, Yeh, H.S.J, Erdös, E.G.: Identity of kininase II with an angiotensin I converting enzyme. In: Vasopeptides: Chemistry, pharmacology and pathophysiology. Back, N, Sicuteri, F. (eds.), pp. 149–153. New York: Plenum Press 1972bCrossRefGoogle Scholar
  169. Igic, R, Yeh, H.S.J, Sorrells, K, Erdös, E.G.: Cleavage of active peptides by a lung enzyme. Experientia 28, 135–136 (1972c)CrossRefGoogle Scholar
  170. Iwata, H, Shimiki, T, Oka, T.: Pharmacological significances of peptidase and proteinase in the brain (Report l)-enzymatic inactivation of bradykinin in rat brain. Biochem. Pharmacol. 18, 119–128 (1969)PubMedCrossRefGoogle Scholar
  171. Iwata, H, Shikimi, T, Iida, M, Müchi, H.: Pharmacological significances of peptidase and proteinase in the brain. Report 4: effect of bradykinin on the central nervous system and role of the enzyme inactivating bradykinin in mouse brain. Jpn. J. Pharmacol. 20, 80–86 (1970)PubMedCrossRefGoogle Scholar
  172. Jaeger, P, Ferguson, R.K, Brunner, H.R, Kirchertz, E.J, Gavras, H.: Mechanism of blood pressure reduction by teprotide (SQ 20881) in rats. Kidney Int. 13, 289–296 (1978)PubMedCrossRefGoogle Scholar
  173. Jakschik, B.A, McKnight, R.C, Marshall, G.R, Feldhaus, R.A, Needleman, P.: Renal vascular changes during hemorrhagic shock and the pharmacologic modification by angiotensin and catecholamine antagonists. Circ. Shock. 1, 231–237 (1974)Google Scholar
  174. Jeanneret, L, Roth, M, Bargetzi, J.-P.: Carboxypeptidase N from pig serum. H.-S. Z. Physiol. Chem. 357, 867–872 (1976)CrossRefGoogle Scholar
  175. Johnson, A.R, Boyden, N.T.: Proteases in cultured human endothelial cells. In: Kininogenases, kallikrein. Haberland, G.L, Rohen, J.W, Suzuki, T. (eds.), pp. 113–118. Stuttgart, New York: Schattauer 1977Google Scholar
  176. Johnson, A.R, Boyden, N.T, Wilson, C.M.: The growth-promoting actions of extracts from mouse submaxillary glands on human endothelial cells in culture. Submitted (1979)Google Scholar
  177. Johnson, A.R, Erdös, E.G.: Angiotensin I converting enzyme in human endothelial cells. Circulation 52, 11–59 (1975)CrossRefGoogle Scholar
  178. Johnson, A.R, Erdös, E.G.: Metabolism of vasoactive peptides by human endothelial cells in culture: angiotensin I converting enzyme (kininase II) and angiotensinase. J. Clin. Invest. 59, 684–695 (1977)PubMedCrossRefGoogle Scholar
  179. Johnson, A.R, Erdös, E.G.: Activities of enzymes in human pulmonary endothelial cells in culture. Circulation 58, 11–108 (1978)Google Scholar
  180. Kangasniemi, P, Riekkinen, P, Penttinen, R, Ivaska, K, Rinne, U. K.: Enzyme changes in the cerebrospinal fluid and serum and their correlation to the breakdown of bradykinin during different stages of headache attacks of migraine patients. Headache 14, 139–148 (1974)PubMedCrossRefGoogle Scholar
  181. Kato, H, Suzuki, T.: Amino acid sequence of bradykinin-potentiating peptide isolated from the venom of Agkistrodon halys blomhoffii. Proc. Jpn. Acad. 46, 176–181 (1970)Google Scholar
  182. Kato, H, Suzuki, T.: Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffii. Isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry 10, 972–980 (1971)PubMedCrossRefGoogle Scholar
  183. Khairallah, P. A, Page, I.H.: Plasma angiotensinases. Biochem. Med. 1, 1–8 (1967)CrossRefGoogle Scholar
  184. Klauser, R.J, Robinson, C.J.G, Erdös, E.G.: Inhibition of human peptidyl dipeptidase (angiotensinI converting enzyme; kininaseII) by serum albumin and its fragments. Hypertension in press (1979)Google Scholar
  185. Koheil, A, Forstner, G.: Isoelectric focusing of carboxypeptidase N. Biochim. Biophys. Acta 524, 156–161 (1978)PubMedCrossRefGoogle Scholar
  186. Koida, M, Walter, R.: Post-proline cleaving enzyme. Purification of this endopeptidase by affinity chromatography. J. Biol. Chem. 297, 7593–7599 (1976)Google Scholar
  187. Kokubu, T, Kato, I, Nishimura, K, Yoshida, N, Hiwada, K, Ueda, E.: Angiotensin Iconverting enzyme in human urine. Clin. Chim. Acta 89, 375–379 (1978)PubMedCrossRefGoogle Scholar
  188. Kokubu, T, Ueda, E, Nishimura, K, Yoshida, N.: Angiotensin I converting enzyme activity in pulmonary tissue of fetal and newborn rabbits. Experientia 33, 1137–1138 (1977)PubMedCrossRefGoogle Scholar
  189. Kreye, V.A.W, Gross, F.: Conversion of angiotensin I to angiotensin II in peripheral vascular beds of the rat. Am. J. Physiol. 220, 1294–1296 (1971)PubMedGoogle Scholar
  190. Krieger, E.M, Salgado, H.C, Assan, C.J, Greene, L.L.J, Ferreira, S.H.: Potential screening test for detection of overactivity of renin-angiotensin system. Lancet 1, 269–271 (1971)PubMedCrossRefGoogle Scholar
  191. Kroneberg, G, Stoepel, K.: Vergleichende Untersuchungen Über die Kreislaufwirkung von Kallikrein (Padutin), Kallidin, und Bradykinin. Arch. Exp. Pathol. Pharmakol. 245, 284–285 (1963)Google Scholar
  192. Laffan, R.J, Goldberg, M.E, High, J.P, Schaeffer, T.R, Waugh, M.H, Rubin, B.: Antihypertensive activity in rats of SQ 14225, an orally active inhibitor of angiotensin Iconverting enzyme. J. Pharmacol. Exp. Ther. 204, 281–288 (1978)PubMedGoogle Scholar
  193. Lanzillo, J.J, Fanburg, B.L.: Membrane-bound angiotensin-converting enzyme from rat lung. J. Biol. Chem. 249, 2312–2318 (1974)PubMedGoogle Scholar
  194. Lanzillo, J.J, Fanburg, B.L.: Angiotensin I-converting enzyme from guinea pig lung and serum. A comparison of some kinetic and inhibition properties. Biochim. Biophys. Acta 445, 161–168 (1976a)CrossRefGoogle Scholar
  195. Lanzillo, J.J, Fanburg, B.L.: The estimation and comparison of molecular weight of angiotensin I converting enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochim. Biophys. Acta 439, 125–132 (1976b)CrossRefGoogle Scholar
  196. Lanzillo, J.J, Fanburg, B.L.: Angiotensin I converting enzyme from human plasma. Biochemistry 16, 5491–5495 (1977a)CrossRefGoogle Scholar
  197. Lanzillo, J.J, Fanburg, B.L.: Low molecular weight angiotensin I converting enzyme from rat lung. Biochim. Biophys. Acta 491, 339–344 (1977b)CrossRefGoogle Scholar
  198. Lee, H.-J, Larue, J.N, Wilson, LB.: Angiotensin-converting enzyme from guinea pig and hog lung. Biochim. Biophys. Acta 250, 549–557 (1971a)CrossRefGoogle Scholar
  199. Lee, H.-J, Larue, J.N, Wilson, LB.: Angiotensin-converting enzyme from porcine plasma. Biochim. Biophys. Acta 235, 521–528 (1971b)CrossRefGoogle Scholar
  200. Lee, H.-J, Larue, J.N, Wilson, LB.: Dipeptidyl carboxypeptidase from Coryne bacterium equi. Biochim. Biophys. Acta 250, 608–613 (1971c)CrossRefGoogle Scholar
  201. Lee, H.-J, Larue, J.N, Wilson, LB.: Human plasma converting enzyme. Arch. Biochem. Biophys. 142, 548–551 (1971d)CrossRefGoogle Scholar
  202. LeDuc, L. E, Marshall, G. R, Needleman, P.: Differentiation of bradykinin receptors and of kininases with conformational analogues of bradykinin. Mol. Pharmacol. 14, 413–121 (1978)PubMedGoogle Scholar
  203. Lentz, K.E, Skeggs, L.T, Woods, K.R, Kahn, J.R, Shumway, N.P.: The amino acid composition of hypertensin II and its biochemical relationship to hypertension I. J. Exp. Med. 104, 183–191 (1956)PubMedCrossRefGoogle Scholar
  204. Leuenberger, P.J, Stalcup, S.A, Mellins, R.B, Greenbaum, L.M, Turino, G.M.: Decrease in angiotensin I conversion by acute hypoxia in dogs. Proc. Soc. Exp. Biol. Med. 158, 586–589 (1978)PubMedGoogle Scholar
  205. Levine, B.W, Talamo, R.C, Kazemi, H.: Action and metabolism of bradykinin in dog lung. J. Appl. Physiol. 34, 821–826 (1973)PubMedGoogle Scholar
  206. Lieberman, J.: Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis. Am. J. Med. 59, 365–372 (1975)PubMedCrossRefGoogle Scholar
  207. Lieberman, J.: The specificity and nature of serum-angiotensin-converting enzyme (serum ACE) elevation in sarcoidosis. Ann. N.Y. Acad. Sci. 278, 488–197 (1976)PubMedCrossRefGoogle Scholar
  208. Lieberman, J, Beutler, E.: Elevation of serum angiotensin-converting enzyme in Gaucher’s disease. N. Engl. J. Med. 294, 1442–1444 (1976)PubMedCrossRefGoogle Scholar
  209. Lieberman, J, Rea, T.H.: Serum angiotensin-converting enzyme in leprosy and coccidioidomycosis. Ann. Int. Med. 87, 422–425 (1977)Google Scholar
  210. Lukjan, H, Bielawic, M, Kiersnowska, B, Korfel, B, Dowzyk, W.: Kininogenase and kininase activity of the blood in arteriosclerosis. Atherosclerosis 16, 61–66 (1972)PubMedCrossRefGoogle Scholar
  211. Mäkinen, P.L, Mäkinen, K.K.: Fractionation and properties of aminopeptidase B during purification and storage. Int. J. Pept. Prot. Res. 4, 241–255 (1972)CrossRefGoogle Scholar
  212. Mäkinen, K. K, Mäkinen, P.-L.: Evidence of erythrocyte aminopeptidase B. Int. J. Prot. Res. III, 41–47 (1971)Google Scholar
  213. Mäkinen, K.K, Oksala, E.: Evidence on the involvement in inflammation of an enzyme resembling aminopeptidase B. Clin. Chim. Acta 49, 301–309 (1973)PubMedCrossRefGoogle Scholar
  214. Marinkovic, D. V, Marinkovic, J. N, Robinson, C.J.G, Erdös, E.G.: Purification of two forms of carboxypeptidase B from human pancreas. Biochem. J. 163, 253–260 (1977)PubMedGoogle Scholar
  215. Marks, N.: Exopeptidases of the nervous system. Int. Rev. Neurobiol. 11, 57–97 (1968)PubMedCrossRefGoogle Scholar
  216. Marks, N.: Conversion and Inactivation of neuropeptides. In: Peptides in neurobiology. Sainer, H. (ed.), pp.221–258. New York: Plenum Press 1977CrossRefGoogle Scholar
  217. Marks, N, Pirotta, M.: Breakdown of bradykinin and its analogs by rat brain neutral proteinase. Brain Res. 33, 565–567 (1971)PubMedCrossRefGoogle Scholar
  218. Massey, T.H, Fessler, D.C.: Substrate binding properties of converting enzyme using a series of p-nitrophenylalanyl derivatives of angiotensin I. Biochemistry 15, 4906–4912 (1976)PubMedCrossRefGoogle Scholar
  219. Mattioli, L, Zakheim, R.M, Mullis, K, Molteni, A.: Angiotensin-I-converting enzyme activity in idiopathic respiratory distress syndrome of the newborn infant and in experimental alveolar hypoxia in mice. J. Pediatr. 87, 97–101 (1975)PubMedCrossRefGoogle Scholar
  220. McCaa, R.E, Hall, J.E, McCaa, C.S.: The effects of angiotensin I-converting enzyme inhibitors on arterial blood pressure and urinary sodium excretion. Role of the renal reninangiotensin and kallikrein-kinin systems. Circ. Res. 43, Suppl. 1,I–32–I–39 (1978)Google Scholar
  221. McCormick, J.T, Senior, J.: The effect of the oestrous cycle, pregnancy and reproductive hormones on the kininase activity of rat blood. J. Reprod. Fertil. 30, 381–387 (1972)PubMedCrossRefGoogle Scholar
  222. McKay, T.J, Plummer, T.H.: By-product analogues for bovine carboxypeptidase B. Biochemistry 17, 401–105 (1978)PubMedCrossRefGoogle Scholar
  223. McNeill, J. R.: Intestinal vasoconstriction following diuretic-induced volume depletion: role of angiotensin and vasopressin. Can. J. Physiol. Pharmacol. 52, 829–839 (1974)PubMedCrossRefGoogle Scholar
  224. Merrill, J.E, Peach, M.J, Gilmore, J.P.: Angiotensin I conversion in the kidney and its modulation by sodium balance. Am. J. Physiol. 224, 1104–1108 (1973)PubMedGoogle Scholar
  225. Miller, Jr., E. D, Samuels, A. I, Haber, E, Barger, A. C.: Inhibition of angiotensin conversion and prevention of renal hypertension. Am. J. Physiol. 228, 448 153 (1975)PubMedGoogle Scholar
  226. Mineshita, S, Nagai, Y.: Hydrolysis of bradykinin by stem bromelain. Jpn. J. Pharmacol. 27, 170–172 (1977)PubMedCrossRefGoogle Scholar
  227. Molteni, A, Zakheim, R. M, Mullis, K. B, Mattioli, L.: The effect of chronic alveolar hypoxia on lung and serum angiotensin I converting enzyme activity. Proc. Soc. Exp. Biol. Med. 147, 263–265 (1974)PubMedGoogle Scholar
  228. Morton, J.J, Semple, P.F, Ledingham, I.McA, Stuart, B, Tehrani, M.A, Garcia, A.R, McGarrity, G.: Effect of angiotensin-converting enzyme inhibitor (SQ 20881) on the plasma concentration of angiotensin I, angiotensin II, and arginine vasopressin in the dog during hemorrhagic shock. Circ. Res. 41, 301–308 (1977)PubMedCrossRefGoogle Scholar
  229. Möse, J.R, Fischer, G, Briefs, C.: Die Wirkung von Clostridium butyricum (Stamm M 55) auf menschliches Kininogen und ihre Bedeutung fur den Onkolyseprozefi. Zentralbl. Bakteriol. [I] 221, 474–491 (1972a)Google Scholar
  230. Möse, J. R, Fischer, G, Mobascherie, T. B.: Über Bakterienkininasen und deren physiologische Bedeutung 2. Mitteilung: Untersuchungen an Colistammen. Zentralbl. Bakteriol. [I] 219, 465–472 (1972b)Google Scholar
  231. Möse, J. R, Fischer, G, Mobascherie, T. B.: Über Bakterienkininasen und deren physiologische Bedeutung 1. Mitteilung: Untersuchungen an Clostridienstammen. Zentralbl. Bakteriol. [I] 219, 530–541 (1972c)Google Scholar
  232. Movat, H.Z, Steinberg, S.G, Habal, F.M, Ranadive, N.S.: Demonstration of a kinin-generating enzyme in the lysosomes of human polymorphonuclear leukocytes. Lab. Invest. 29, 669–684 (1973a)Google Scholar
  233. Movat, H. Z, Steinberg, S. G, Habal, F. M, Ranadive, N. S.: Kinin-forming and kinin-inactivating enzymes in human neutrophil leukocytes. Agents Actions 3/5, 284–291 (1973b)CrossRefGoogle Scholar
  234. Mue, S, Takahashi, M, Ohmi, T, Shibahara, S, Yamauchi, K, Fujimoto, S, Okayama, H, Takishima, T.: Serum angiotensin converting enzyme level in bronchial asthma. Ann. Allergy 40, 51–57 (1978)PubMedGoogle Scholar
  235. Muirhead, E.E, Brooks, B, Arora, K.K.: Prevention of malignant hypertension by the synthetic peptide SQ 20881. Lab. Invest. 30, 129–135 (1974)Google Scholar
  236. Muirhead, E.E, Prewitt, R.L, Brooks, B, Brosius, W.L.: Antihypertensive action of the orally active converting enzyme inhibitor (SQ 14225) in spontaneously hypertensive rats. Circ. Res. 43, Suppl. I, I–53–I–59 (1978)Google Scholar
  237. Murachi, T, Miyake, T.: Action of stem bromelian on bovine bradykininogen II and bradykinin. Physiol. Chem. Phys. 2, 97–104 (1970)Google Scholar
  238. Murthy, V.S, Waldon, T.L, Goldberg, M. E, Vollmer, R.R.: Inhibition of angiotensin converting enzyme by SQ 14225 in conscious rabbits. Eur. J. Pharmacol. 46, 207–212 (1977)PubMedCrossRefGoogle Scholar
  239. Murthy, V. S, Waldron, T. L, Goldberg, M. E.: Inhibition of angiotensin-converting enzyme by SQ 14225 in anesthetized dogs: hemodynamic and renal vascular effects. Proc. Soc. Exp. Biol. Med. 157, 121–124 (1978a)Google Scholar
  240. Murthy, V.S, Waldron, T.L, Goldberg, M.E.: The mechanism of bradykinin potentiation after inhibition of angiotensin-converting enzyme by SQ 14225 in conscious rabbits. Circ. Res. Suppl. I, I–40–I–45 (1978b)Google Scholar
  241. Nakahara, N.: Plasma hippuryl-l-lysine hydrolase inhibition by low molecular weight substance in lysosomes of skeletal muscle. Biochem. Pharmacol. 21, 2635–2641 (1972)PubMedCrossRefGoogle Scholar
  242. Nakahara, M.: Plasma hippuryl-l-lysine hydrolase in tourniquet shock. Experientia 29, 999–1000 (1973)PubMedCrossRefGoogle Scholar
  243. Nakahara, M.: Subunits of human plasma kininase II generated by plasma kallikrein. Biochem. Pharmacol. 27, 1651–1657 (1978)PubMedCrossRefGoogle Scholar
  244. Nakajima, T, Oshima, G, Yeh, H.S.J, Igic, R.P, Erdös, E.G.: Purification of the angiotensin I converting enzyme of the lung. Biochim. Biophys. Acta 315, 430–438 (1973)CrossRefGoogle Scholar
  245. Nasjletti, A, Colina-Chourio, J, McGiff, J. C.: Disappearance of bradykinin in the renal circulation of dogs. Effects of kininase inhibition. Circ. Res. 37, 59–65 (1975)PubMedCrossRefGoogle Scholar
  246. Needleman, P, Douglas, Jr. J.R, Jakschik, B.B, Blumberg, A.L, Isakson, P.C, Marshall, G.R.: Angiotensin antagonists as pharmacological tools. Fed. Proc. 35, 2488–2493 (1976)PubMedGoogle Scholar
  247. Needleman, P, Johnson, Jr., E. M, Vine, W, Flanigan, E, Marshall, G. R.: Pharmacology of antagonists of angiotensin I and II. Circ. Res. 31, 862–867 (1972)PubMedCrossRefGoogle Scholar
  248. Needleman, P, Marshall, G. R, Sobel, B. E.: Hormone interactions in the isolated rabbit heart. Synthesis and coronary vasomotor effects of prostaglandins, angiotensin, and bradykinin. Circ. Res. 37, 802–808 (1975)PubMedCrossRefGoogle Scholar
  249. Ng, K.K.F, Vane, J.R.: Conversion of angiotensin I to angiotensin II. Nature 216, 762–766 (1967)PubMedCrossRefGoogle Scholar
  250. Ng, K.K.F, Vane, J.R.: Fate of angiotensin I in the circulation. Nature 218, 144–150 (1968)PubMedCrossRefGoogle Scholar
  251. Nielsen, H. M.: Kinin forming and destroying activities in human bile and mucous membranes of the biliary tract. Br. J. Pharmacol. 37, 172–177 (1969)PubMedCrossRefGoogle Scholar
  252. Nishimura, K, Hiwada, K, Ueda, E, Kokubu, T.: Affinity chromatography of angiotensin Iconverting enzyme from rabbit lung using hippurylhistidylleucyl-OH. Biochim. Biophys. Acta 445, 158–160 (1976a)CrossRefGoogle Scholar
  253. Nishimura, K, Hiwada, K, Ueda, E, Kokubu, T.: Solubilization of angiotensin I converting enzyme from rabbit lung using trypsin treatment. Biochim. Biophys. Acta 452, 144–150 (1976b)CrossRefGoogle Scholar
  254. Nishimura, K, Yoshida, N, Hiwada, K, Ueda, E, Kokubu, T.: Purification of angiotensin Iconverting enzyme from human lung. Biochim. Biophys. Acta 483, 398–408 (1977)PubMedCrossRefGoogle Scholar
  255. Nishimura, K, Yoshida, N, Hiwada, K, Ueda, E, Kokubu, T.: Properties of three different forms of angiotensin I-converting enzyme from human lung. Biochim. Biophys. Acta 522, 119–131 (1978)Google Scholar
  256. Oates, H. F, Stokes, G. S.: Role of extrapulmonary conversion of mediating the systemic pressor activity of angiotensin I. J. Exp. Med. 140, 79–86 (1974)PubMedCrossRefGoogle Scholar
  257. Odya, C.E, Levin, Y, Erdös, E.G., Robinson, C.J.G.: Soluble dextran complexes of kallikrein, bradykinin and enzyme inhibitors. Biochem. Pharmacol. 27, 173–179 (1978b)CrossRefGoogle Scholar
  258. Odya, C.E, Marinkovic, D, Hammon, K.J, Stewart, T.A, Erdös, E.G.: Purification and properties of procarboxypeptidase (angiotensinase C) from human kidney. J. Biol. Chem. 253, 5927–5931 (1978a)Google Scholar
  259. Oh-ishi, S, Sakuma, A, Katori, M.: Kininase activity in equine plasma. Biochem. Pharmacol. 21, 3078–3082 (1972)CrossRefGoogle Scholar
  260. Oliveira, E.B, Martins, A.R, Camargo, A.C.M.: Isolation of brain endopeptidases: influence of size and sequence of substrates structurally related to bradykinin. Biochemistry 15, 1961–1974 (1976a)CrossRefGoogle Scholar
  261. Oliveira, E.B, Martins, A.R, Camargo, A.C.M.: Rabbit brain thiol-activated endopeptidase. Hydrolysis of bradykinin and kininogen. Gen. Pharmac. 7, 159–161 (1976b)CrossRefGoogle Scholar
  262. Olsen, U.B.: Kininase inhibition by glucagon. Acta Endocrinol. 87, 552–556 (1978)PubMedGoogle Scholar
  263. Onabanjo, A.O., Bhabani, A.R, Maegraith, B.G.: The significance of kinin-destroying enzymes activity in Plasmodium knowlesi malarial infection. Br. J. Exp. Pathol. 51, 534–540 (1970)PubMedGoogle Scholar
  264. Ondetti, M.A, Engel, S.L.: Bradykinin analogs containing β-homoamino acids. J. Med. Chem. 18, 761–763 (1975)PubMedCrossRefGoogle Scholar
  265. Ondetti, M.A, Rubin, B, Cushman, D.W.: Design of specific inhibitors of angiotensinconverting enzyme: New class of orally active antihypertensive agents. Science 196, 441–444 (1977)PubMedCrossRefGoogle Scholar
  266. Ondetti, M.A, Williams, N.J, Sabo, E.F, Pluscec, J, Weaver, E.R, Kocy, O.: Angiotensinconverting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry 10, 4033–4039 (1971)PubMedCrossRefGoogle Scholar
  267. Oparil, S.: Angiotensin I conversion. In: Renin. Horrobin, D.F. (ed.), Vol.1, pp.56–65. Montreal: Eden Press 1976Google Scholar
  268. Oparil, S, Carone, F.A, Pullman, T.N, Nakamura, S.: Inhibition of proximal tubular hydrolysis and reabsorption of bradykinin by peptides. Am. J. Physiol. 231, 743–748 (1976a)Google Scholar
  269. Oparil, S, Low, J, Koerner, T.J.: Altered angiotensin I conversion in pulmonary disease. Clin. Sci. Mol. Med. 51, 537–543 (1976b)Google Scholar
  270. Oparil, S, Katholi, R.: Angiotensin I conversion. In: Renin. Horrobin, D.F. (ed.), Vol. 2, pp. 72–83. Montreal: Eden Press 1977Google Scholar
  271. Oparil, S, Koerner, T.J, Lindheimer, M.D.: Plasma angiotensin converting enzyme activity in mother and fetus. J. Clin. Endocrinol. Metabol. 46, 434–439 (1978)CrossRefGoogle Scholar
  272. Oparil, S, Koerner, T, Tregear, G.W, Barnes, B.A, Haber, E.: Substrate requirements for angiotensin I conversion in vivo and in vitro. Circ. Res. 32, 415–423 (1973)PubMedCrossRefGoogle Scholar
  273. Oparil, S, Sanders, C.A., Haber, E.: In-vivo and in-vitro conversion of angiotensin I to angiotensin II in dog blood. Circ. Res. 26, 591–599 (1970)PubMedCrossRefGoogle Scholar
  274. Oparil, S, Tregear, G.W, Koerner, T, Barnes, B.A, Haber, E.: Mechanism of pulmonary conversion of angiotensin I to angiotensin II in the dog. Circ. Res. 29, 682–690 (1971)PubMedCrossRefGoogle Scholar
  275. Oshima, G, Erdös, E.G.: Inhibition of the angiotensin I converting enzyme of the lung by a peptide fragment of bradykinin. Experientia 30, 733 (1974)PubMedCrossRefGoogle Scholar
  276. Oshima, G, Geese, A, Erdös, E.G.: Angiotensin I converting enzyme of the kidney cortex. Biochim. Biophys. Acta 350, 26–37 (1974a)CrossRefGoogle Scholar
  277. Oshima, G, Kato, J, Erdös, E.G.: Subunits of human plasma carboxypeptidase N (Kininase I; anaphylatoxin inactivator). Biochim. Biophys. Acta 365, 344–348 (1974b)CrossRefGoogle Scholar
  278. Oshima, G, Kato, J, Erdös, E. G.: Plasma carboxypeptidase N, subunits and characteristics. Arch. Biochem. Biophys. 110, 132–138 (1975)CrossRefGoogle Scholar
  279. Oshima, G, Nagasawa, K.: Some enzymatic properties of peptidyl dipeptide hydrolase (angiotensin I-converting enzyme). J. Biochem. 81, 57–63 (1977)PubMedGoogle Scholar
  280. Oshima, G, Nagasawa, K, Kato, J.: Renal angiotensin I-converting enzyme as a mixture of sialo-and asialo-enzyme, and a rapid purification method. J. Biochem. 80, 477–483 (1976)PubMedGoogle Scholar
  281. Oshima, G, Shimabukuro, H, Nagasawa, K.: Peptide inhibitors of angiotensin converting enzyme in digests of gelatin by bacterial collagenase Biochim. Biophys. Acta 566, 128–137 (1979)CrossRefGoogle Scholar
  282. Orlowski, M, Wilk, E.: Concentration of angiotensin converting enzyme and angiotensin degrading enzymes in brain micro vessels. Fed. Proc. 31, 602 (1978)Google Scholar
  283. Overturf, M, Wyatt, S, Boaz, D, Fitz, A.: Angiotensin I (Phe8-His9 ) hydrolase and bradykininase from human lung. Life Sci. 16, 1669–1682 (1975)PubMedCrossRefGoogle Scholar
  284. Paskhina, T.S, Trapeznikova, S.S, Egopova, T.P, Morozova, N.A.: Effect of bradykininpotentiating snake venom peptides and C-terminal pentapeptide fragment of bradykinin on carboxypeptidase N and kininase activities of human blood serum. Biokhimiya 40, 844–853 (1975)Google Scholar
  285. Persson, A, Wilson, I. B.: A fluorogenic substrate or angiotensin-converting enzyme. Anal. Biochem. 83, 296–303 (1977)PubMedCrossRefGoogle Scholar
  286. Petakova, M, Simonianova, E, Rybak, M.: Carboxypeptidases N (kininase I) in rat serum lungs, liver and spleen and the inactivation of kinins (Bradykinin). Physiol. Bohemosl. 21, 287–293 (1972)Google Scholar
  287. Pettinger, W.A, Keeton, K, Tanaka, K.: Radioimmunoassay and pharmacokinetics of saralasin in the rat and hypertensive patients. Clin. Pharmacol. Ther. 11, 146–158 (1975)Google Scholar
  288. Piquilloud, Y, Reinharz, A, Roth, M.: Action de l’enzyme de conversion (converting enzyme) sur des substrats synthetiques. Helv. Physiol. Pharmacol. Acta 26, 231–232 (1968)Google Scholar
  289. Piquilloud, Y, Reinharz, A, Roth, M.: Studies on the angiotensin converting enzyme with different substrates. Biochim. Biophys. Acta 206, 136–142 (1970)PubMedCrossRefGoogle Scholar
  290. Plummer, T.H, Hurwitz, M. Y.: Human plasma carboxypeptidase N. Isolation and characterization. J. Biol. Chem. 253, 3907–3912 (1978)PubMedGoogle Scholar
  291. Poth, M.M., Heath, R.G, Ward, M.: Angiotensin-converting enzyme in human brain. J. Neurochem. 25, 83–85 (1975)PubMedCrossRefGoogle Scholar
  292. Prado, J.L, Limaos, E. A, Roblero, J, Freitas, J.O, Prado, E.S, Paiva, A.C.M.: Recovery and conversion of kinins in exsanguinated rat preparations. N.S. Arch. Pharmacol. 290, 191–205 (1975)CrossRefGoogle Scholar
  293. Re, R, Novelline, R, Escourrou, M.-T, Athanasoulis, C, Bruton, J, Haber, E.: Inhibition of angiotensin-converting enzyme for diagnosis of renal-artery stenosis. N. Engl. J. Med. 298, 582–586 (1978)PubMedCrossRefGoogle Scholar
  294. Reissmann, S, Paegelov, I, Leisner, H, Arold, H.: Stabilitat verschiedener Bradykininanaloga gegen Kininase II. Experientia 31, 1395–1396 (1975)PubMedCrossRefGoogle Scholar
  295. Rhoads, R.E, Udenfriend, S.: Substrate specificity of collagen proline hydroxylase: Hydroxylation of a specific proline residue in bradykinin. Arch. Biochem. Biophys. 133, 108–111 (1969)PubMedCrossRefGoogle Scholar
  296. Rohrbach, M.S.: (Glycine-1-14C) hippuryl-l-Histidyl-l-leucine: A substrate for the radiochemical assay of angiotensin converting enzyme. Anal. Biochem. 84, 272–276 (1978)PubMedCrossRefGoogle Scholar
  297. Romero, J.C, Mak, S.W, Hoobler, S.W.: Effect of blockade of angiotensin-I converting enzyme on the blood pressure of renal hypertensive rabbits. Cardiovasc. Res. 8, 681–687 (1974)PubMedCrossRefGoogle Scholar
  298. Roth, M, Weitzman, A.F, Piquilloud, Y.: Converting enzyme content of different tissues of the rat. Experientia 25, 1247 (1969)PubMedCrossRefGoogle Scholar
  299. Rubin, B, Laffan, R.J, Kotler, D.G, O’Keefe, E.H, Demaio, D.A, Goldberg, M.E.: SQ 14225 (d-3-mercapto-2-methylpropanoyl-l-proline), a novel orally active inhibitor of angiotensin I-converting enzyme. J. Pharmacol. Exp. Ther. 204, 271–280 (1978)PubMedGoogle Scholar
  300. Ryan, J.W, Chung, A, Ammons, C, Carlton, M.L.: A simple radioassay for angiotensinconverting enzyme. Biochem. J. 167, 501–504 (1977)PubMedGoogle Scholar
  301. Ryan, J.W, Day, A.R, Schultz, D.R, Ryan, U.S., Chung, A, Marlborough, D.I, Dorer, F.E.: Localization of angiotensin converting enzyme (kininase II). I. Preparation of antibodyhemeoctapeptide conjugates. Tissue Cell 8, 111–124 (1976a)CrossRefGoogle Scholar
  302. Ryan, J.W, Roblero, J, Stewart, J.M.: Inactivation of bradykinin in the pulmonary circulation. Biochem. J. 110, 795–797 (1968)PubMedGoogle Scholar
  303. Ryan, J.W, Roblero, J, Stewart, J.M.: Inactivation of bradykinin in rat lung. Adv. Exp. Med. 8, 263–271 (1970)CrossRefGoogle Scholar
  304. Ryan, J.W, Ryan, U.S., Schultz, D.R, Whitaker, C, Chung, A, Dorer, F.E.: Subcellular localization of pulmonary angiotensin-converting enzyme (kininase II), Biochem. J. 146, 497–499 (1975)PubMedGoogle Scholar
  305. Ryan, J.W, Smith, U.: A rapid, simple method for isolating pinocytotic vesicles and plasma membrane of lung. Biochim. Biophys. Acta. 249, 177–180 (1971)PubMedCrossRefGoogle Scholar
  306. Ryan, U.S., Ryan, J.W, Whitaker, C, Chiu, A.: Localization of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell 8, 125–245 (1976b)CrossRefGoogle Scholar
  307. Rybak, M, Blazkova, B, Petakova, M.: Occurrence of aminopeptidases (arylaminopeptidases) in human amniotic fluid and their participation on kinin degradation. H. S. Z. Physiol. Chem. 352, 1611–1616 (1971)CrossRefGoogle Scholar
  308. Rybak, M, Mansfeld, V, Grimova, J, Petakova, M.: Effect of carboxypeptidase N, aprotinin and anti-inflammatory drugs of pyrazolidine type on experimental inflammations in rats. Pharmacology 16, 11–16 (1978)PubMedCrossRefGoogle Scholar
  309. Sampaio, C.A.M., Nunes, S.T, Mazzacoratti, M.D.G.N, Prado, J.L.: Inactivation of kinins by chymotrypsin. Biochem. Pharmacol. 25, 2391–2394 (1976)PubMedCrossRefGoogle Scholar
  310. Samuels, A.I, Miller, E.D, Fray, J.C.S, Haber, E, Barger, A.C.: Renin-angiotensin antagonists and the regulation of blood pressure. Fed. Proc. 35, 2512–2520 (1976)PubMedGoogle Scholar
  311. Sancho, J, Re, R, Burton, J, Barger, A.C., Haber, E.: The role of the renin-angiotensinaldosterone system in cardiovascular homeostasis in normal human subjects. Circulation 53, 400–495 (1976)PubMedCrossRefGoogle Scholar
  312. Sander, G. E, Huggins, C G.: Subcellular localization of angiotensin I converting enzyme in rabbit lung. Nature New Biol. 230, 27–29 (1971)PubMedGoogle Scholar
  313. Sander, G.E, West, D.W, Huggins, C.G.: Peptide inhibitors of pulmonary angiotensin I converting enzyme. Biochim. Biophys. Acta 242, 662–667 (1971)PubMedCrossRefGoogle Scholar
  314. Sander, G.E, West, D.W, Huggins, C.G.: Inhibitors of the pulmonary angiotensinIconverting enzyme. Biochim. Biophys. Acta 289, 392–400 (1972)PubMedCrossRefGoogle Scholar
  315. Scholz, H.W, Biron, P.: Non-identity between pulmonary bradykininase and convertingenzyme activity. Rev. Can. Biol. 28, 197–200 (1969)PubMedGoogle Scholar
  316. Scicli, A.G, Gandolfi, R, Carretero, O. A.: Site of formation of kinins in the dog nephron. Am. J. Physiol. 234, F36–F40 (1978)PubMedGoogle Scholar
  317. Semple, P. F.:The concentration of angiotensins I and II in blood from the pulmonary artery and left ventricle of man. J. Clin. Endocrinol. Metabol. 44, 915–920 (1977)CrossRefGoogle Scholar
  318. Severs, W.B, Summy-Long, J.: The role of angiotensin in thirst. Life Sci. 17, 1513–1526 (1975)PubMedCrossRefGoogle Scholar
  319. Shikimi, T, Houki, S, Iwata, H.: Pharmacological significances of peptidase and proteinase in the brain Report 3: Substrate specificity and amino acid composition of partially purified enzyme inactivating bradykinin in rat brain. Jpn. J. Pharmacol. 20, 169–170 (1970)PubMedCrossRefGoogle Scholar
  320. Shikimi, T, Iwata, H.: Pharmacological significances of peptidase and proteinase in the brain-II. Purification and properties of a bradykinin inactivating enzyme from rat brain. Biochem. Pharmacol. 19, 1399–1407 (1970)CrossRefGoogle Scholar
  321. Silverstein, E, Friedland, J.: Elevated serum and spleen angiotensin converting enzyme and serum lysozyme in Gaucher’s disease. Clin. Chim. Acta 74, 21–25 (1977)PubMedCrossRefGoogle Scholar
  322. Silverstein, E, Friedland, J, Lyons, H. A, Gourin, A.: Elevation of angiotensin-converting enzyme in granulomatous lymph nodes and serum in sarcoidosis: Clinical and possible pathogenic significance. Ann. N.Y. Acad. Sci. 278, 498–513 (1976a)CrossRefGoogle Scholar
  323. Silverstein, E, Friedland, J, Lyons, H.A, Gourin, A.: Markedly elevated angiotensin converting enzyme in lymph nodes containing non-necrotizing granulomas in sarcoidosis. Proc. Natl. Acad. Sci. USA 73, 2137–2141 (1976b)CrossRefGoogle Scholar
  324. Skeggs, L.T, Kahn, J.R, Shumway, N.P.: The preparation and function of the hypertensinconverting enzyme. J. Exp. Med. 103, 295–299 (1956)PubMedCrossRefGoogle Scholar
  325. Skeggs, L.T, Marsh, W.H, Kahn, J.R, Shumway, N.P.: The existence of two forms of hypertensin. J. Exp. Med. 99, 275–282 (1954)PubMedCrossRefGoogle Scholar
  326. Smith, R.J, Contrera, J.F.: Cobalt-induced alterations in plasma proteins, proteases and kinin system of the rat. Biochem. Pharmacol. 23, 1095–1103 (1974)PubMedCrossRefGoogle Scholar
  327. Soffer, R. L.: Angiotensin-converting enzyme and the regulation of vasoactive peptides. Ann. Rev. Biochem. 45, 73–94 (1976)PubMedCrossRefGoogle Scholar
  328. Soffer, R.L, Reza, R, Caldwell, P.R.B.: Angiotensin-converting enzyme from rabbit pulmonary particles. Proc. Natl. Acad. Sci. USA 71, 1720–1724 (1974)PubMedCrossRefGoogle Scholar
  329. Stalcup, S.A, Leuenberger, P.J, Lipset, J.S, Turino, G.M, Mellins, R.B.: Decrease in instantaneous pulmonary clearance of bradykinin by acute hypoxia in dogs. Fed. Proc. 37, 292 (1978)Google Scholar
  330. Stanley, P, Biron, P.: Pressor response to angiotensin I during cardio-pulmonary bypass. Experientia 15, 46–47 (1969)CrossRefGoogle Scholar
  331. Stevens, R.L, Micalizzi, E.R, Fessler, D.C, Pals, D.T.: Angiotensin I converting enzyme of calf lung. Method of assay and partial purification. Biochemistry 11, 2999–3007 (1972)PubMedCrossRefGoogle Scholar
  332. Stewart, J.M, Ferreira, S.H, Greene, L.J.: Bradykinin potentiating peptide PCA-Lys-Trp-Ala-Pro. An inhibitor of the pulmonary inactivation of bradykinin and conversion of angiotensin I to II. Biochem. Pharmacol. 20, 1557–1567 (1971)CrossRefGoogle Scholar
  333. Streeten, D.H.P, Kerr, L.P, Kerr, C.B, Prior, J.C, Dalakos, T.G.: Hyperbradykininism: A new orthostatic syndrome. Lancet 3, 1048–1053 (1972)CrossRefGoogle Scholar
  334. Teger-Nilsson, A.-C.: Degradation of human fibrinopeptides A and B in blood serum in vitro. Acta Chem. Scand. 22, 3171–3182 (1968)PubMedCrossRefGoogle Scholar
  335. Thurston, H, Laragh, J.H.: Prior receptor occupancy as a determinant of the pressor activity of infused angiotensin II in the rat. Circ. Res. 36, 113–117 (1975)PubMedCrossRefGoogle Scholar
  336. Thurston, H, Swales, J.D.: Converting enzyme inhibitor and saralasin infusion in rats. Evidence for an additional vasodepressor property of converting enzyme inhibitor. Circ. Res. 42, 588–592 (1978)PubMedCrossRefGoogle Scholar
  337. Tonzetich, J, Eigen, E, Volpe, A. R, Weiss, S.: Relationship of salivary kininase activity to periodontal status in humans. J. Periodontal. Res. 4, 118–126 (1969)PubMedCrossRefGoogle Scholar
  338. Trautschold, I.: Assay method in the kinin system. In: Handbook of Experimental Pharmacology. Erdös, E.G. (ed.), Vol. XXV, pp.52–81. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  339. Tsai, B.-S, Khosla, M.C, Peach, M.J, Bumpus, F.M.: Synthesis and evaluation of Des-Asp1-angiotensin I: A precursor for Des-Asp angiotensin II (AIII). J. Med. Chem. 18, 1180–1183 (1975)PubMedCrossRefGoogle Scholar
  340. Tsai, B.-S, Peach, M.J.: Angiotensin homologs and analogs as inhibitors of rabbit pulmonary angiotensin-converting enzyme. J. Biol. Chem. 252, 4674–4681 (1977)PubMedGoogle Scholar
  341. Tuerker, R. K, Ercan, Z. S.: High degree of conversion of angiotensin I to angiotensin II in the mesenteric circulation of the isolated perfused terminal ileum of the cat. Arch. Int. Physiol. Biochim. 83, 845–853 (1975)CrossRefGoogle Scholar
  342. Ueda, E., Akutsu, H, Kokubu, T, Yamamura, Y.: Partial purification and properties of angiotensin I converting enzyme from rabbit plasma. Jpn. Circ. J. 35, 801–806 (1971)PubMedCrossRefGoogle Scholar
  343. Ueda, E, Kokubu, T, Akutsu, H, Ito, T.: Angiotensin I converting enzyme and kininase. Jpn. Circ. J. 36, 583–586 (1972)PubMedCrossRefGoogle Scholar
  344. Uszynski, M, Malofiejew, M.: Kininase activity in the human placenta. Biochem. Pharmacol. 20, 3211–3212 (1971)PubMedCrossRefGoogle Scholar
  345. Vallota, E.H, Muller-Eberhard, H.J.: Formation of C3a and C5a anaphylatoxins in whole human serum after inhibition of the anaphylatoxin inactivator. J. Exp. Med. 137, 1109–1123 (1973)PubMedCrossRefGoogle Scholar
  346. Vane, J. R.: The release and fate of vaso-active hormones in the circulation. Br. J. Pharmacol. 35, 209–242 (1969)PubMedCrossRefGoogle Scholar
  347. Vannier, Ch, Louvard, D, Maroux, S, Desnuelle, P.: Structural and topological homology between porcine intestinal and renal brush border aminopeptidase. Biochim. Biophys. Acta 445, 185–199 (1976)Google Scholar
  348. Vennerod, A. M.: Effects of tetraethylthiuram disulphide (disulfiram), diethyldithiocarbamate and ethanol on factors of the kinin system in human blood. Acta Pharmacol. Toxicol. 28, 454–465 (1970)CrossRefGoogle Scholar
  349. Wallace, K. B, Bailie, M. D, Hook, J. B.: Angiotensin-converting enzyme in developing lung and kidney. Am. J. Physiol. 234, R141–R145 (1978)PubMedGoogle Scholar
  350. Ward, P.E, Erdös, E.G., Gedney, C.D., Dowben, R.M, Reynolds, R.C.: Isolation of membrane-bound renal enzymes that metabolize kinins and angiotensins. Biochem. J. 157, 642–650 (1976)Google Scholar
  351. Ward, P.E, Erdös, E.G.: Metabolism of kinins and angiotensins in the kidney. In: Kininogenases, kallikrein 4. Haberland, G.L, Rohen, J.W, Suzuku, T. (eds.), pp. 107–110. Stuttgart, New York: Schattauer 1977Google Scholar
  352. Ward, P.E, Gedney, C.D., Dowben, R.M, Erdös, E.G.: Isolation of membrane-bound renal kallikrein and kininase. Biochem. J. 151, 755–758 (1975)PubMedGoogle Scholar
  353. Ward, P.E, Klauser, R.J, Erdös, E.G.: Angiotensin I converting enzyme (peptidyl dipeptidase) in the brush border of human intestinal mucosa. Circulation 58,11–251 (1978a)Google Scholar
  354. Ward, P.E, Schultz, W, Reynolds, R.C, Erdös, E.G.: Metabolism of kinins and angiotensins in the isolated glomerulus and brush border of rat kidney. Lab. Invest. 36, 599–706 (1977)PubMedGoogle Scholar
  355. Ward, P.E, Stewart, T.A, Igic, R.P.: Angiotensin I converting enzyme in retinal blood vessels. Fed. Proc. 37, 658 (1978b)Google Scholar
  356. Weese, W.C, Talamo, R.C, Neyhard, N.L, Kazemi, H.: Presence of a bradykinin-like substances in pulmonary washings. Am. Rev. Resp. Dis. 113, 181–187 (1976)PubMedGoogle Scholar
  357. Wiegershausen, B, Klausch, B, Hennighausen, G, Paegelow, I, Raspe, R.: Content of kininogen and activity of kininase in the amniotic fluid in the various periods of pregnancy. Gynecol. Invest. 1, 234–239 (1970)PubMedCrossRefGoogle Scholar
  358. Wigger, H.J, Stalcup, S.A.: Distribution and development of angiotensin converting enzyme in the fetal and newborn rabbit. An immunofluorescence study. Lab. Invest. 38, 581–585 (1978)PubMedCrossRefGoogle Scholar
  359. Williams, G.H.: Angiotensin-dependent hypertension — potential pitfalls in definition. N. Engl. J. Med. 296, 684–685 (1977)PubMedCrossRefGoogle Scholar
  360. Williams, G.H, Hollenberg, N.K.: Accentuated vascular and endocrine response to SQ 20881 in hypertension. N. Engl. J. Med. 297, 184–188 (1977)PubMedCrossRefGoogle Scholar
  361. Wright, I.G.: Kinin, kininogen and kininase levels during acute Babesia bovis (=B. argentina) infection of cattle. Br. J. Pharmacol. 61, 567–572 (1977)PubMedCrossRefGoogle Scholar
  362. Yamashita, M, Oyama, T, Kudo, T.: Effect of the inhibitor of angiotensin I converting enzyme on endocrine function and renal perfusion in haemorrhagic shock. Can. Anaesth. Soc. J. 24, 695–701 (1977)PubMedCrossRefGoogle Scholar
  363. Yang, H.Y.T, Erdös, E.G.: Second kininase in human blood plasma. Nature 215, 1402–1403 (1967)PubMedCrossRefGoogle Scholar
  364. Yang, H.Y.T, Erdös, E.G., Chiang, T.S.: New enzymatic route for the inactivation of angiotensin. Nature 218, 1224–1226 (1968)PubMedCrossRefGoogle Scholar
  365. Yang, H.Y.T, Erdös, E.G., Jenssen, T.A, Levin, Y.: Characterization of an angiotensin I converting enzyme. Fed. Proc. 29, 281 (1970)Google Scholar
  366. Yang, H.Y.T, Erdös, E.G., Jenssen, T.A, Levin, Y.: Characterization of an angiotensin I converting enzyme. Fed. Proc. 29, 281 (1970c)Google Scholar
  367. Yang, H.Y.T, Erdös, E.G., Levin, Y.: A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim. Biophys. Acta. 214, 374–376 (1970a)CrossRefGoogle Scholar
  368. Yang, H.Y.T, Erdös, E.G., Levin, Y.: Characterization of a dipeptide hydrolase (kininase I I: angiotensin I converting enzyme). J. Pharmacol. Exp. Ther. 177, 291–300 (1971)PubMedGoogle Scholar
  369. Yang, H.Y.T, Jenssen, T.A, Erdös, E.G.: Conversion of angiotensin I by a kininase preparation. Clin. Res. 18, 88 (1970b)Google Scholar
  370. Yang, H.Y.T, Neff, N.H.: Distribution and properties of angiotensin converting enzyme of rat brain. J. Neurochem. 19, 2443–2450 (1972)PubMedCrossRefGoogle Scholar
  371. Yang, H.Y.T, Neff, N.H.: Differential distribution of angiotensin converting enzyme in the anterior and posterior lobe of the rat pituitary. J. Neurochem. 21, 1035–1036 (1973)PubMedCrossRefGoogle Scholar
  372. Yaron, A, Mlynar, D, Berger, A.: A dipeptidocarboxypeptidase from E. coli. Biochem. Biophys. Res. Commun. 41, 897–902 (1972)CrossRefGoogle Scholar
  373. Yokoyama, S, Oobayshi, A, Tanabe, O, Ohata, K, Shibata, Y, Ichishima, E.: Kininase and anti-inflammatory activities of acid carboxypeptidase from penicillium janthinellum. Experientia 31, 1122–1123 (1975)PubMedCrossRefGoogle Scholar
  374. Zacest, R, Oparil, S, Talamo, R.C.: Studies of plasma bradykinins using radiolabeled substrates. Aust. J. Exp. Biol. Med. Sci. 52, 601–606 (1974)PubMedCrossRefGoogle Scholar
  375. Arregui, A, Bennett, J. P, Bird, E. D, Yamamura, H. I, Iversen, L. L, Snyder, S. H.: Ann. Neurol. 2, 294 (1977)PubMedCrossRefGoogle Scholar
  376. Arregui, A, Emson, P.C, Spokes, E.G.: Europ. J. Pharmacol. 52, 121 (1978)CrossRefGoogle Scholar
  377. Brunner, H.R, Wauters, J.-P, McKinstry, D, Waeber, B, Turini, G, Gavras, H.: Lancet 1978 II, 704Google Scholar
  378. Bunning, P, Holmquist, B, Riordan, J.F.: Biochem. Biophys. Res. Commun. 83, 1442 (1978)PubMedCrossRefGoogle Scholar
  379. Fernley, R.T.: Clin. Exp. Pharmacol. Physiol. 4, 267 (1977)PubMedCrossRefGoogle Scholar
  380. Freeman, R.H, Davis, J.O, Khosla, M.C.: Am. J. Physiol. 234, F130 (1978)PubMedGoogle Scholar
  381. Gavras, H, Faxon, D.R, Berkoben, J, Brunner, H.R, Ryan, T. J.: Circulation 58, 770 (1978)PubMedCrossRefGoogle Scholar
  382. Hartley, J.L, Soffer, R.L.: Biochem. Biophys. Res. Commun. 83, 1545 (1978)CrossRefGoogle Scholar
  383. Hayes, L. W, Goguen, C. A, Ching, S.-F, Slakey, L. L.: Biochem. Biophys. Res. Commun. 82,1147 (1978)PubMedCrossRefGoogle Scholar
  384. Malfroy, B, Swerts, J.R, Guyon, A, Roques, B.P, Schwartz, J.C.: Nature 276, 523 (1978)PubMedCrossRefGoogle Scholar
  385. Studdy, P, Bird, R, James, D.G., Sherlock, S.: Lancet 1978 II, 1331Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • E. G. Erdös

There are no affiliations available

Personalised recommendations