Synergetics pp 51-56 | Cite as

Etude cinétique de la réaction de Bray

  • G. Schmitz
  • H. Rooze
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 3)


The kinetics of the BRAY reaction (hydrogen peroxide decomposition catalysed by the iodate-iodine couple) has been studied in a closed reactor provided with a pump circulating the solution through the cell of spectrophotometer. The measures have been done in the following conditions:
$$\begin{array}{l} {\left[ {{H_2}{O_2}} \right]_o} = 1.1M\quad ;\;{\left[ {KI{O_3}} \right]_o} = .019M \\ {\left[ {C{H_2}{{\left( {COOH} \right)}_2}} \right]_o} = .013m\quad ;\;{\left[ {MnS{O_4}} \right]_o} - .004M \\ {\left[ {HCl{O_4}} \right]_o} = .057M\quad ;\;T = 25^\circ C\;;\;\tau = 4.8\min \\ \end{array}$$

The rate of iodine formation, the maximum concentration reached during a period, the rate of iodine decomposition and the minimum concentration reached have been measured. These values have been correlated with the concentrations of iodate (near constant) of hydrogen peroxide (measured calorimetrically in samples taken during the oscillations) and of iodide (measured with an Orion selective electrode).

The results obtained are discussed according to a kinetic scheme based on the mechanism of the iodate-iodide-iodine reaction. This mechanism has been completed with the reactions of hydrogen peroxide as simply as possible in order to explain the origin of the oscillations without introducing unrelated complications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.C. Bray, J. Am. Chem. Soc. 43, 1262 (1921)CrossRefGoogle Scholar
  2. 2.
    M.G. Peard et C. F. Cullis, Trans. Faraday Soc. 47, 616 (1951)CrossRefGoogle Scholar
  3. 3.
    D.O. Cooke, Prog. Reaction Kinetics 8 (3), 185 (1977)Google Scholar
  4. 4.
    I. Matsuzaki, T. Nakajima et H.A. Liebhafsky, Faraday Symp. 9,55 (1974)CrossRefGoogle Scholar
  5. 5.
    G. Schmitz, J. Chim. Phys. Chim. Biol. 71, 689 (1974)Google Scholar
  6. 6.
    K. Sharma et R.M. Noyes, J. Am. Chem. Soc. 98, 4345 (1976)CrossRefGoogle Scholar
  7. 7.
    R. Furuichi, I. Matsuzaki, R. Simic et H.A. Liebhafsky, Inorg. Chem. 11, 952 (1972)CrossRefGoogle Scholar
  8. 8.
    A.D. Pethybridge et J.E. Prue, Trans. Faraday Soc. 63, 2019(1967)Google Scholar
  9. 9.
    H.A. Liebhafsky et L.S. Wu, J. Am. Chem. Soc. 96, 7180 (1974)CrossRefGoogle Scholar
  10. 10.
    W.C. Bray, J. Am. Chem. Soc. 52, 3580 (1930)CrossRefGoogle Scholar
  11. 11.
    A. Skrabal, Z. Elektrochem. 40, 232 (1934)Google Scholar
  12. 12.
    H. Taube et H. Dodgen, J. Am. Chem. Soc. 71, 3330 (1949)CrossRefGoogle Scholar
  13. 13.
    J. Sigalla, J. Chim. Phys. Biol. 55, 758 (1958)Google Scholar
  14. 14.
    A.F.M. Barton et G.A. Wright, J. Chem. Soc. A, 2096 (1968)Google Scholar
  15. 15.
    A.F.M. Barton, H.N. Cheong et R.E. Smidt, J. Chem. Soc. Faraday I 72 (3), 568 (1976)CrossRefGoogle Scholar
  16. 16.
    M. Eigen et K. Kustin, J. Am. Chem. Soc. 84, 1355 (1962)CrossRefGoogle Scholar
  17. 17.
    I. Matsuzaki, R. Simic et H.A. Liebhafsky, Bull. Chem. Soc. Japan 45, 3367 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • G. Schmitz
  • H. Rooze

There are no affiliations available

Personalised recommendations