Biochemie pp 233-348 | Cite as

Verwertung der Energiespeicher und Energiegewinnung in der Postresorptionsphase

  • Kurt Jungermann
  • Hanns Möhler


Organspezifischer Substratfluß im „Hunger“und im „Fasten“
  • Im „Hunger“(kurzfristiger Nahrungsentzug) und im „Fasten“(langfristiger Nahrungsentzug) werden die polymeren Energiespeicher zu monomeren Substraten abgebaut, die dann von den einzelnen Organen zur Energiegewinnung herangezogen werden. Der Stoffwechsel ist in beiden Phasen qualitativ gleich, aber quantitativ deutlich verschieden. Die meisten Organe können Fettsäuren als Energiesubstrate verwerten, das ZNS und die Erythrocyten sind jedoch auf Glucose angewiesen. Daher muß der Organismus immer gleichzeitig Fettsäuren und Glucose bereitstellen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Organspezifischer Substratfluß

  1. Cahill, G. F., Morliss, E. B., Aoki, T. T.: Fat and nitrogen metabolism in fasting man. In: Adipose Tissue, Regulation and Functions (Jeanrenaud, B., Hepp, D., Eds.), p. 181. Stuttgart: Thieme; New York: Academic Press 1970.Google Scholar
  2. Owen, O. E., Reichard, G. A.: Fuels consumed by man. The interplay between carbohydrates and fatty acids. In: Progress in Biochemical Pharmacology (Paoletti, R., Ed.), Vol. 6, p. 177–213. Basel: Karger 1971.Google Scholar
  3. Krebs, H. A.: Some aspects of the regulation of fuel supply in omnivorous animals. Advanc. Enzyme Regulat. 10, 397–420 (1972).CrossRefGoogle Scholar
  4. Young, V. R., Scrimshaw, N. S.: The Physiology of Starvation. Sci. Amer. 225, (4), 14–21 (1971).PubMedCrossRefGoogle Scholar
  5. McIlwain, H., Bachelard, H. S.: Biochemistry and the Central Nervous System, p. 8–31. London: Churchill-Livingstone 1971.Google Scholar
  6. Lin, E. C.: Glycerol utilization and its regulation in mammals. Ann. Rev. Biochem. 46, 765–795 (1977).PubMedCrossRefGoogle Scholar
  7. Fröberg, S., Carlson, L., Ekelund, L.: Local Lipid Stores and Exercise. Adv. Exp. Med. Biol. 11, 307–313 (1971).Google Scholar
  8. Hultman, E., Nilsson, L. H.: Liver Glycogen in Man. Effect of Different Diets and Muscular Exercise. Adv. Exp. Med. Biol. 11, 143–151 (1971).Google Scholar
  9. Hultman, E., Bergström, J., Roch-Norlund, A. E.: Glycogen Storage in Human Skeletal Muscle. Adv. Exp. Med. Biol. 11, 273–288 (1971).Google Scholar
  10. Saltin, B., Karlsson, J.: Muscle Glycogen Utilization During Work of Different Intensities. Adv. Exp. Med. Biol. 11, 289–299 (1971).Google Scholar
  11. Keul, J.: Myocardial Metabolism in Athletes. Adv. Exp. Med. Biol. 11, 447–455 (1971).Google Scholar

Stoff wechselsteuerung durch Hormone

  1. Sawin, C. T.: The Hormones. London: Churchill 1969.Google Scholar
  2. Unger, R. H.: Alpha- and Beta-cell Interrelationsships in Health and Disease. Metabolism 23, 581–593 (1974).PubMedCrossRefGoogle Scholar
  3. Himms-Hagen, J.: Effects of Catecholamines on Metabolism. In: Handbook of Experimental Pharmacology, Vol. 33, p. 363–462. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  4. Taunton, O. D., Stiefel, F. B., Greene, H. L., Herman, R. H.: Rapid Reciprocal Changes in Rat Hepatic Glycolytic Enzyme and Fructosediphosphatase Activities following Insulin and Glucagon Injection. J. biol. Chem. 249, 7228–7239 (1974).PubMedGoogle Scholar
  5. Stiefel, F. B., Taunton, O. D., Greene, H. L., Herman, R. H.: Rapid Reciprocal Changes in Rat Tissue Enzyme Activities following Epinephrine Injection. J. biol. Chem. 249, 7240–7244 (1974).Google Scholar
  6. Thompson, E. B., Lippman, M. E.: Mechanism of Action of Glucocorticoids. Metabolism 23, 159 (1974).PubMedCrossRefGoogle Scholar
  7. Gerich, J. E., Lorenzi, M., Hane, S., Gustafson, G., Guillemin, R., Forsham, P. H.: Evidence for a Physiological Role of Pancreatic Glucagon in Human Glucose Homeostasis: Studies With Somatostatin. Metabolism 24, 175 (1975).PubMedCrossRefGoogle Scholar
  8. Unger, R. H.: Pancreatic Glucagon in Health and Disease. Advanc. intern. Med. 17, 265 (1971).Google Scholar
  9. Day, J. L.: The Metabolic Consequences of Adrenergic Blockade: a Review. Metabolism 24, 987–996 (1975).PubMedCrossRefGoogle Scholar
  10. Fain, J. N., Tolbert, M. E. M., Pointer, R. H., Butcher, F. R., Arnold, A.: Cyclic Nucleotides and Gluconeogenesis by Rat Liver Cells. Metabolism 24, 395 (1975).PubMedCrossRefGoogle Scholar
  11. Salomon, Y., Lin, M. C., Londos, C., Rendell, M., Rodbell, M.: The Hepatic Adenylate Cyclase System (GTP Activation). J. biol. Chem. 250, 4239–4245 (1975).PubMedGoogle Scholar
  12. Pastan, I.: Cyclic AMP. Sci. Amer. 227 (8), 97 (1972).PubMedCrossRefGoogle Scholar
  13. Hardman, J. G., Robison, G. A., Sutherland, E. W.: Cyclic Nucleotides. Ann. Rev. Physiol. 33, 311–336 (1971).CrossRefGoogle Scholar
  14. Siegenthaler, W., Werning, C., Vetter, W.: Nebennierenrinde. In: Klinische Pathophysiologie, (W. Siegenthaler, Hrsg.), p. 335–366. Stuttgart: Thieme 1976.Google Scholar
  15. Burgus, R., Guillemin, R.: Hypothalamic releasing factors. Ann. Rev. Biochem. 39, 499 (1970).PubMedCrossRefGoogle Scholar
  16. Merimee, T. J., Rabin, D.: A survey of growth hormone secretion and action. Metabolism 22, 1235–1251 (1973).PubMedCrossRefGoogle Scholar
  17. Van Wyk, J. J., Underwood, L. E., Hintz, R. L., Clemmons, D. R., Voina, S. J., Weaver, R. P.: The Somatomedins: A family of insulinlike hormones under growth hormone control. Rec. Progr. Horm. Res. 30, 259 (1974).PubMedGoogle Scholar
  18. Gelehrter, Th. D.: Mechanism of Hormonal Induction of Enzymes. Metabolism 22, 85 (1973).PubMedCrossRefGoogle Scholar
  19. Sutherland, E. W.: Zur Wirkungsweise der Hormone. Angew. Chem. 84, 1117 (1972).CrossRefGoogle Scholar
  20. Bühler, H. U., Da Prada, M., Haefely, W., Picotti, G. B.: Plasma Adrenalin, Noradrenalin and Dopamine in Man and Different Animal Species. J. Physiol. 276, 311–320 (1978).PubMedGoogle Scholar
  21. Lüthold, B. E., Bühler, F. R., Da Prada, M.: Dynamik von Plasmacatecholaminen und β-Adrenoceptor-Funktionen. Schweiz. med. Wschr. 106, 1735–1738 (1976).Google Scholar
  22. von Euler, U. S.: Adrenal medullary secretion and its neural control. In: Neuroendocrinology, Vol. II (C. Martini, W. F. Ganong, Eds.) p. 283. New York-London: Academic Press 1967Google Scholar
  23. Pfeuffer, T., Helmreich, E.: Activation of Pigeon Erythrocyte Membrane Adenylate Cyclase by Guanylnucleotide Analogues and Separation of a Nucleotide Binding Protein. J. biol. Chem. 250, 867–876 (1975)PubMedGoogle Scholar
  24. Levitzki, A.: The Role of GTP in the Activation of Adenylate Cyclase. Biochem. Biophys. Res. Commun. 74, 1154–1159 (1977).PubMedCrossRefGoogle Scholar

Energiespeicherabbau zu monomeren Substraten

  1. Fischer, E. H., Heilmeyer, L., Haschke, R. H.: Phosphorylase and the Control of Glycogen Degradation. Curr. Top. Cell Regulat. 4, 211–251 (1971).Google Scholar
  2. Krebs, E. G.: Protein Kinases. Curr. Top. Cell Regulat. 5, 99–134 (1972).Google Scholar
  3. Hers, H. G., De Wulf, H., Stalmans, W.: The control of glycogen metabolism in the liver. FEBS Letters 12, 73–81 (1970).PubMedCrossRefGoogle Scholar
  4. Jeanrenaud, B.: Adipose Tissue Dynamics and Regulation. Ergebn. Physiol. 60, 57–140 (1968).PubMedGoogle Scholar
  5. London, D. R., Foley, T. H.: Evidence for the Release of Individual Aminoacids from the Resting Human Forearm. Nature 208, 588–589 (1965).CrossRefGoogle Scholar
  6. Ruderman, N. B., Berger, M.: The Formation of Glutamin and Alanine in Skeletal Muscle. J. biol. Chem. 249, 5500–5506 (1974).PubMedGoogle Scholar
  7. Schimassek, H., Gerok, W.: Control of the Levels of Free Amino Acids in Plasma by the Liver. Biochem. Z. 343, 407–415 (1965).PubMedGoogle Scholar
  8. Garber, A. J., Karl I.E., Kipnis, D.M.: Alanine and Glutamine Synthesis and Release from Skeletal Muscle. J. biol. Chem. 251, 826–835, 836–843, 844–850, 851–857 (1976).PubMedGoogle Scholar
  9. Shimazu, T., Amakawa, A.: Regulation of glycogen metabolism in liver by the autonomic nervous system; possible mechanism of Phosphorylase activation by the splanchnic nerve. Biochem. Biophys. Acta 385, 242–256 (1975).PubMedGoogle Scholar

Energiegewinnung durch Abbau monomerer Substrate

  1. Greville, G. D., Tubbs, P. K.: The Catabolism of Long-Chain Fatty Acids in Mammalian Tissues. Ess. Biochem. 4, 155–212 (1968).Google Scholar
  2. Masoro, E. J.: Physiological Chemistry of Lipids in Mammals. Philadelphia: Saunders 1968.Google Scholar
  3. Thomitzek, W. D.: Die Rolle des Carnitins im Intermediärstoffwechsel. Ergebn. Physiol. 62, 68–90 (1970).PubMedCrossRefGoogle Scholar
  4. Krebs, H. A., Williamson, D. H., Bates, M. N., Page, M. A., Hawkins, R. A.: The Role of Ketone Bodies in Caloric Homeostasis. Adv. Enzyme Regulat. 9, 387–409 (1971).CrossRefGoogle Scholar
  5. Felig, P.: Amino Acid Metabolism in Man. Ann. Rev. Biochem. 44, 933–955 (1975).PubMedCrossRefGoogle Scholar
  6. Schepartz, B.: Regulation of Amino Acid Metabolism in Mammals. Philadelphia: Saunders 1973.Google Scholar
  7. Krebs, H. A., Hems, R., Lund, P.: Some regulatory mechanisms in the synthesis of urea in mammalian liver. Adv. Enzyme Regulat. 11, 361–378 (1973).CrossRefGoogle Scholar
  8. Ratner, S.: Enzymes of Arginine and Urea Synthesis. Advanc. Enzymol. 39, 1–90 (1973).Google Scholar
  9. Lowenstein, J. M.: Ammonia Production in Muscle and Other Tissues: the Purine Nucleotide Cycle. Physiol. Rev. 52, 382–414 (1972).Google Scholar
  10. McGivan, J. D., Chappell, J. B.: On the metabolic function of glutamate dehydrogenase in rat liver. FEBS Letters 52, 1–7 (1975).PubMedCrossRefGoogle Scholar
  11. Sies, H., Summer, K. H., Bücher, Th.: A process requiring mitochondrial NADPH: urea formation from ammonia. FEBS Letters 54, 274 (1975).PubMedCrossRefGoogle Scholar

Bereitstellung monomerer Substrate aus anderen monomeren Vorläufern

  1. Scrutton, M. C., Utter, M. F.: The regulation of glycolysis and gluconeogenesis in animal tissues. Ann. Rev. Biochem. 37, 249–302 (1968).CrossRefGoogle Scholar
  2. Exton, J.H.: Gluconeogenesis. Metabolism 21, 945–989 (1972).PubMedCrossRefGoogle Scholar
  3. Newsholme, E. A., Start, C.: Regulation in metabolism, p. 71–73, 121–124, 247–292, 315–323. London: Wiley 1973.Google Scholar
  4. Gumaa, K. A., Greenbaum, A. L., McLean, P.: Compartmentation in relation to metabolic control in liver. Ess. Biochem. 7, 39–86 (1971).Google Scholar
  5. Marliss, E., Aoki, T. T., Felig, P., Pozefsky, T., Cahill, G. F.: Hormones and Substrates in the Regulation of Gluconeogenesis in Fasting Man. Advanc. Enzyme Regulat. 8, 3–12 (1970).CrossRefGoogle Scholar
  6. Sasse, D., Katz, N., Jungermann, K.: Functional Heterogeneity of Rat Liver Parenchyma and of Isolated Hepatocytes. FEBS Letters 57, 83–88 (1975).PubMedCrossRefGoogle Scholar
  7. Krebs, H. A.: The Regulation of the Release of Ketone Bodies by the Liver. Advanc. Enzyme Regulat. 4, 339–353 (1966).CrossRefGoogle Scholar
  8. Felig, P., Wahren, J., Räf, L.: Evidence of Inter-Organ Amino-Acid Transport by Blood Cells in Humans. Proc. Nat. Acad. Sci. USA 70, 1775–1779 (1973).PubMedCrossRefGoogle Scholar
  9. Williamson, J. R.: Role of Anion Transport in the Regulation of Metabolism. In: Gluconeogenesis — Its Regulation in Mammalian Species (R. W. Hanson, M. A. Mehlman, Eds.) p. 165–220. New York: Wiley 1976.Google Scholar
  10. Brand, I. A., Müller, M. K., Unger, C., Söling, H. D.: In vivo and in vitro interconversions of active and inactive forms of phosphofructokinase in rat liver. FEBS Letters 68, 271–274 (1976).PubMedCrossRefGoogle Scholar
  11. Soboll, S., Scholz, R., Heldt, H.: Subcellular Metabolite Concentrations. Europ. J. Biochem. 87, 377–390 (1978).PubMedCrossRefGoogle Scholar
  12. Jungermann, K., Sasse, D.: Heterogeneity of liver parenchymal cells. Trends Biochem. Sci. 3, 198–202 (1978).CrossRefGoogle Scholar
  13. Riou, J. P., Claus, T. H., Pilkis, S. J.: Stimulation by Glucagon of In Vivo Phosphorylation of Rat Hepatic Pyruvate Kinase. J. biol. Chem. 253, 656–659 (1978).PubMedGoogle Scholar
  14. Ekman, P., Dahlquist, U., Humble, E., Engström, L.: Comparative kinetic studies on the L-type pyruvate kinase from rat liver and the enzyme phosphorylated by 3′,5′-AMP-stimulated protein kinase. Biochim. Biophys. Acta (Amsterdam) 429, 374–382 (1976).Google Scholar


  1. Fernandes, K.: Hepatic glycogen storage diseases. In: The treatment of inherited metabolic disease (D. N. Raine, Ed.). Lancaster: MTP Press 1975.Google Scholar
  2. Steinitz, K.: Laboratory diagnosis of glycogen diseases. Advanc. clin. Chem. 9, 228–354 (1967).Google Scholar
  3. Cornblath, M., Schwartz, R.: Disorders of glycogen metabolism. In: Disorders of carbohydrate metabolism in infancy (A. J. Schaffer, Ed.). Philadelphia-London: Saunders 1966.Google Scholar
  4. Bickel, H., Bremer, H. J.: Störungen des Stoffwechsels. In: Lehrbuch der Kinderheilkunde, 4. Aufl. (A.Wiskott, K.Betke, W.Künzer, Eds.) S. 14.11–14.14. Stuttgart: Thieme 1977.Google Scholar


  1. Sevitt, S.: Fat Embolism. J. Trauma 10, 1074–1077 (1970).PubMedCrossRefGoogle Scholar
  2. Huth, K.: Fettstoffwechselveränderungen bei der experimentellen Fettembolie. Anaesthesiol. Wiederbeleb. 58, 96–98 (1971).Google Scholar
  3. Baltensweiler, J.: Prophylaxe der Fettembolie. Arch. Chir. 329, 517–518 (1972).CrossRefGoogle Scholar

Diabetes mellitus

  1. Labhart, A.: Klinik der Inneren Sekretion, 2. Aufl. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  2. Mehnert, H., Förster, H.: Stoffwechselkrankheiten — Biochemie und Klinik, 2. Aufl. Stuttgart: Thieme 1975.Google Scholar
  3. Mehnert, H., Schöffling, K.: Diabetologie in Klinik und Praxis. Stuttgart: Thieme 1974.Google Scholar
  4. Pfeiffer, E. F.: Handbuch des Diabetes mellitus, Band I: Pathophysiologie und Klinik. München: Lehmann 1968.Google Scholar
  5. Williams, R.: Textbook of endocrinology, 4. Ed. Philadelphia: Saunders 1968.Google Scholar
  6. Renold, A. E., Stauffacher, W., Cahill, G.: Diabetes mellitus. In: The Metabolic Basis of Inherited Disease, 3rd ed. (J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, Eds.), p. 83–118. New York: McGraw-Hill 1972.Google Scholar
  7. Weinges K. F.: Ist eine Neuorientierung der oralen Diabetesbehandlung nötig? Med. Welt 23, 949–962 (1972).PubMedGoogle Scholar

Störungen des Harnstoffcyclus

  1. Colombo, J. B.: Congenital disorders of the urea cycle and ammonia detoxication. Basel: Karger 1971.Google Scholar
  2. Gerok, W.: Biochemische Befunde bei der Entstehung einer Hyperammoniämie. Anaesthesiol. Wiederbel. 13, 94 (1966).Google Scholar
  3. Szam, I.: Ammoniakstoffwechsel. Stuttgart: Schattauer 1972.Google Scholar


  1. Alpers, D. H., Isselbacher, K. J.: Fatty liver: Biochemical and clinical aspects. In: Diseases of the liver (L. Schiff, Ed.). Philadelphia: Lipincott 1975.Google Scholar
  2. Lieber, S.S.: Origin and pathogenesis of fatty acid accumulation in the liver during prolonged ethanol consumption. In: Metabolic changes induced by alcohol (G. A. Martini and Ch. Bode, Eds.). Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  3. Gerok, W.: Pathogenese, Diagnose und Therapie der Fettleber. Med. Welt 24, 862 (1973).PubMedGoogle Scholar

Fettsucht (Überernährung)

  1. Cahill, G. F., Owen, O. E., Morgan, A. P.: The consumption of fuels during prolonged starvation. Advanc. Enzyme Regulat. 6, 143 (1968).CrossRefGoogle Scholar
  2. Daweke, H., Haase, J., Irmscher, K.: Diätkatalog. Berlin-Heidelberg-New York: Springer 1976.Google Scholar
  3. Ditschuneit, H., Faulhaber, J.-D., Beil, Pfeiffer, E. F.: Veränderungen des Stoffwechsels bei Null-Diät. Internist (Berl.) 11, 176 (1970).Google Scholar
  4. Griess, F. A., Berchtold, P, Berger, M.: Adipositas. Pathophysiologie, Klinik und Therapie. Berlin-Heidelberg-New York: Springer 1976.Google Scholar
  5. Hadorn, W: Behandlungsmöglichkeiten der Fettsucht. Schweiz. med. Wschr. 84, 575 (1954).PubMedGoogle Scholar
  6. Holtmeier, H.-J.: Diät bei Übergewicht und gesunde Ernährung, 4. überarbeitete Auflage, S. 10. Stuttgart: Thieme 1969.Google Scholar
  7. Kasper, H., Rabast, U.: Kritisches zur diätetischen Behandlung der Adipositas. Aktuelle Ernährungsmedizin 1, 5 (1976).Google Scholar
  8. Königsfeld, H.: Die Lebensdauer des Menschen. Lebensversicherungsmedizin 8, 43 (1976).Google Scholar
  9. Matzkies, F., Baumbauer, E., Pemsel, W., Kori-Lindner, C., Berg, G., Sailer, D., Grabner, W., Bergner, D.: Erfahrungen mit einer Minimalernährung zur ambulanten Behandlung des Übergewichts. Med. u. Ernähr. 13, 97 (1972).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Kurt Jungermann
    • 1
  • Hanns Möhler
    • 2
  1. 1.Physiologisch-Chemisches Institut der Universität GöttingenGöttingenDeutschland
  2. 2.Abteilung für experimentelle MedizinHoffmann-La RocheBaselSwitzerland

Personalised recommendations