Advertisement

Time and Intensity Dependence of the Infrared Absorption of SF6: Measurements with an Injection-Locked Single Mode TEA CO2 Laser

  • S. D. Smith
  • W. E. Schmid
  • F. M. G. Tablas
  • K. L. Kompa
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 6)

Abstract

With SF6 established as the model polyatomic molecule for studies of absorption of high power infrared laser radiation it is surprising that few measurements of the time-development of absorption during a laser Dulse have been made. Those published refer1–4 to intensities between 10-104 W/cm2, Rabi flop times > 10 ns and time resolution ~10 ns, where coherent effects, such as selfinduced transparancy and pulse delay, can be observed for transitions essentially between 2 levels. Time-integrated absorption has been reported, e.g. 5-8 fluences, ø from 1 mJ/cm2 − 10 J/cm2 (3 KW/cm2 − 30 MW/cm2). For most excitation frequencies the absorption cross section, σ, falls as ø-1/3 from ~ 10-18 − 10-19 cm2. These values are in contrast to the low intensity value which is as high as 1.7 ß 10-17 cm2.5

Keywords

Absorption Cross Section Incident Intensity Pump Pulse Duration Double Resonance Experiment Effective Absorption Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Patel, C.K.N, and Slusher, R.E., Phys. Rev. Lett. 19, 1019 (1967)ADSCrossRefGoogle Scholar
  2. [2]
    Rhodes, C.K. and Szöke, A., Phys. Rev. 184, 25 (1969)ADSGoogle Scholar
  3. [3]
    Hopf, F.A., Rhodes, C.K. and Szöke, A., Phys. Rev. B 1, 2833 (1970)ADSCrossRefGoogle Scholar
  4. [4]
    Zembrod, A. and Gruhl, T., Phys. Rev. Lett. 27, 287 (1971)ADSCrossRefGoogle Scholar
  5. [5]
    Lyman, J.L., Feldman, B.J. and Fischer, R.A., Opt. Commun. 25, 391 (1978)ADSCrossRefGoogle Scholar
  6. [6]
    Black, J.D., Yablonovitch, E., Bloembergen, N., Makand, S., Phys. Rev. Lett. 38, 1131 (1977)Google Scholar
  7. [7]
    Stafast, H., Schmid, W.E. and Kompa, K.L., Opt. Commun. 21, 121 (1977)ADSCrossRefGoogle Scholar
  8. [8]
    Ambartzumian, R.V., Gorokhov, Yu.A., Lethokov, V..S. and Maharov, G.N., Zh. Eksp. Teor. Fiz 69, 1956 (1975)Google Scholar
  9. [9]
    Schmid, W.E., Max-Planck-Institut für Plasmaphysik Report IV /84 (1975)Google Scholar
  10. [10]
    For example, Izatt, J.R., Budhiraja, C.J. and Mathien, P., IEE J. of Quantum Electronics 13, 396 (1977)Google Scholar
  11. [11]
    Quigley, G.P., Advances in Laser Chemistry, A.H. Zewail ed., Springer Series in Chemical Physics, 1978Google Scholar
  12. [12]
    Fuß, W., Chemical Physics, to be publishedGoogle Scholar
  13. [13]
    Deutsch, T. and Brueck, S.R.J., Chemical Physics Lett. 54, 258 (1978)ADSCrossRefGoogle Scholar
  14. [14]
    Bloembergen, N. and Yablonovitch, E., this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • S. D. Smith
    • 1
  • W. E. Schmid
    • 1
  • F. M. G. Tablas
    • 1
  • K. L. Kompa
    • 1
  1. 1.Projektgruppe für Laserforschung der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.Garching bei MünchenFed. Rep. of Germany

Personalised recommendations