Skip to main content

Abstract

If we observe the sun in the continuum of its spectrum, the surface shows a mosaic-like intensity structure that is called “granulation” in astrophysics, Fig. 1. This structure was first observed in 1877 by the French astronomer Jansen who also gave it its name. Since the “discovery” of a convectively unstable layer in the solar atmosphere by Unsold in 1931, in which energy transport occurs by means of convection rather than by radiation, the granulation has been considered a consequence of the convection zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor, G. I., Phil. Trans. R. Soc. Lond. A 215, I (1915).

    Google Scholar 

  2. Schmidt, W.: Der Massenaustausch in freier Luft und verwandte Erscheinungen. Hamburg (1925).

    MATH  Google Scholar 

  3. Prandtl, L., ZAMM 5, (1925) pp. 136.

    MATH  Google Scholar 

  4. Biermann, L., Z. Astrophys. 5 (1932) pp. 117.

    ADS  MATH  Google Scholar 

  5. Biermann, L., Ergebn. exact. Naturw. 21, I (1945).

    Google Scholar 

  6. Öpik, E. J., Publ. Obs. Astr. Univ. Tartu 30 (1938) No 3.

    Google Scholar 

  7. Vitense, E., Z. Astrophys. 32 (1953) pp. 135.

    ADS  Google Scholar 

  8. Böhm, K.-H., Astrophys. J. 137 (1963) pp. 881.

    Article  ADS  MATH  Google Scholar 

  9. Latour, J.; Spiegel, E.A.; Toomre, J.; Zahn, J.-P., Ap. J. 207 (1976) pp. 233.

    Article  MathSciNet  ADS  Google Scholar 

  10. Mattig, W.; Nesis, A., Solar Phys. 36 (1974) pp. 3.

    Article  ADS  Google Scholar 

  11. Schmidt, W.: Statistische Analyse der solaren Feinstruktur. Mitte-Rand-Variation der Granulation. (Diplomarbeit) Univ. Freiburg, 1977.

    Google Scholar 

  12. Deubner, F. L.; Mattig, W., Astron. u. Astrophys. 45 (1975) pp. 167.

    ADS  Google Scholar 

  13. Durrant et. al. : Studies of granular velocities. VIII. High dependence of vertical granular velocity component. (to be published)

    Google Scholar 

  14. Richardson, R. S.; Schwarzschild, M., Ap. J. 111 (1950) pp. 209.

    Article  Google Scholar 

  15. Deardorff, J. W.; Willis, G. E., J. Fluid Mech. 28 (1967) pp. 675.

    Article  ADS  Google Scholar 

  16. Mattig, W.; Mehltretter, J. P.; Nesis, A., Solar Phys. 10 (1969) pp. 254.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nesis, A. (1979). Convection and the Solar Granulation. In: Müller, U., Roesner, K.G., Schmidt, B. (eds) Recent Developments in Theoretical and Experimental Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67220-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67220-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67222-4

  • Online ISBN: 978-3-642-67220-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics