Advertisement

Some Results on the Dynamic Deformation of Copper

  • M. Stelly
  • R. Dormeval
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

The influence of strain rate and strain rate history on the mechanical behaviour of copper single crystals has been studied by means of compression tests. The shear strain rate range 10-4s-1–8 103s-1 has been investigated. Dynamic tests were performed with an Hopkins on bar.

The strain rate behaviour can be divided into 2 regions. Above 103s-1 a linear relationship between shear stress and shear strain rates is observed. This can be explained by a viscous damping of dislocations. Static curves are sometimes over the dynamic ones depending of the strain rate.

Tests performed with change of strain rate have shown that strain rate history memory is never lost.

Results are compared with those obtained by tensile tests.

Keywords

High Strain Rate Shear Strain Rate Strain Rate Effect Copper Single Crystal Dynamic Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell J.D. - Dynamic plasticity of metals. Udine 1970 -Springer Verlag.Google Scholar
  2. 2.
    Glenn T.; Bradley W. - The origin of strain-rate sensitivity in OFHC copper. Met. Trans. 4 (1973) 2243–2348.CrossRefGoogle Scholar
  3. 3.
    Edington J.W. - The influence of strain rate on the mechanical properties and dislocation substructure in deformed copper single crystals. Phil. Mag. 19 (1969) 1189–1206.CrossRefGoogle Scholar
  4. 4a.
    Dusek F. et al. - Response of Cu single crystals to high loading rates. Czech. J. Phys. B 26. (1976) 538–555 andCrossRefGoogle Scholar
  5. 4b.
  6. 5.
    Kumar A.; Kumble R.G. - Viscous drag on dislocations at high strain rates in copper. J. Appl. Physics. 40–9 (1969) 3475–3480.CrossRefGoogle Scholar
  7. 6.
    Klepaczko J.; Duffy J. - Strain rate and temperature memory effects for some polycristalline f.c.c. metals in Mechanical Properties at high rates of strain. Institute of Physics conf. ser. N°21 (1974).Google Scholar
  8. 7.
    Eleiche A.M.; Campbell J.D. - The influence of strain -rate history on the shear strength of copper and titanium at large strains. University of Oxford Report 1106/74 (1974).Google Scholar
  9. 8.
    Senseny P.E.; Duffy J.; Hawley R.H. - The effect of strain rate and strain rate history on the flow stress of four close packed metals. Brown University Report (1976).Google Scholar
  10. 9.
    Klepaczko J. - Thermally activated now and strain rate history effects for some polycrystalline f.c.c. metals. Mat. Sci. Eng. 18 (1975) 121–135.CrossRefGoogle Scholar
  11. 10.
    Dormeval R.; Stelly M.; Caput M. - Comportement en traction dynamique de monocristaux de cuivre — ICSMA 4 proceedings Nancy France (1976) Vol.3. 1141–1145.Google Scholar
  12. 11.
    Caput M. - Private communication.Google Scholar
  13. 12.
    Buchalet C. - Etude théorique et expérimentale des essais de traction à grande vitesse. Recherche d’un modèle général de comportement — Rapport CEA R-4162 (1970).Google Scholar
  14. 13.
    Bell J.F.; Green R.E. - An experimental study of the double slip deformation hypothesis for face-centred cubic single crystals. Phil. Mag. 15–135 (1967) 469–476.CrossRefGoogle Scholar
  15. 14.
    Taylor G.I. - The distortion of crystals of aluminium under compression. in the scientific papers of G.I. Taylor Vol. 1. 205 — Ed. Batchelor Cambridge 1958.Google Scholar
  16. 15.
    Yoshida S.; Nagata N. - Deformation of Aluminium single crystals at high strain rates. Trans. JIM 8 (1967) 26–32.Google Scholar
  17. 16.
    Nagata N.; Yoshida S. - Deformation of copper single crystals and polycrystals at high strain rates. Trans. JIM 13 (1972) 332–338.Google Scholar
  18. 17.
    Larrecq M. - Comportement mécanique de monocristaux d’aluminium. CEA Internal Report 1976.Google Scholar
  19. l8.
    DeVáult G.P. - The effect of lateral inertia in the propagation of plastic strain in a cylindrical rod. J. Mech. Phys. Solids 13 (1965) 5.Google Scholar
  20. 19.
    Kumar A.; Hauser F.E.; Dorn J.E. - Viscous drag on dislocations in aluminium at high strain rates. Acta Met. 16 (1968) 1189–1197.CrossRefGoogle Scholar
  21. 20.
    Klahn D.; Mukherjee A.K.; Dorn J.E. - Strain rate effects. ICSMA 2 Proceedings Asilomar (1970) Vol.3. 951–982.Google Scholar
  22. 21a.
    Alers G.A.; Thompson D.O. - J. Appl. Phys. 32 (1961) 283CrossRefGoogle Scholar
  23. 21b.
  24. 22.
    Stern R.M.: Granato A.V. - Overdamped resonance of dislocations in copper. Acta Met. 10 (1962) 358–381.CrossRefGoogle Scholar
  25. 23.
    Jassby K.M.; Vreeland T. - An experimental study of the mobility of edge dislocations in pure copper single crystals. Phil. Mag. 21–174 (1970) 1147–1168.CrossRefGoogle Scholar
  26. 24.
    Suzuki T.; Ikushima A.; Aoki M. - Acoustic attenuation studies of the frictional force on a fast moving dislocation. Acta. Met. 12 (1964) 1231–1240.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin/Heidelberg 1979

Authors and Affiliations

  • M. Stelly
    • 1
  • R. Dormeval
    • 1
  1. 1.Commissariat à l’Energie AtomiqueService MétallurgieParisFrance

Personalised recommendations