Skip to main content

Dislocation Configurations Due to Plate Impact

  • Conference paper

Summary

Plate impact recovery experiments are described in which single crystals of LiF are impacted by a thin flyer plate. Provisions are made to prevent reloading of the crystal by reflected waves or repeated impact. As a result, the crystal remains in position for subsequent removal to examine the dislocation configurations produced by a known stress pulse. Observation of dislocations by an etch pit technique shows large increases in dislocation density with closely spaced, long glide bands emanating from both front and rear surfaces. Comparatively short, widely spaced interior glide bands have lengths comparable to those predicted by applying the linear drag model of ultrasonic attenuation studies to the stress levels of the plate impact experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, J. N.; Jones, O. E.; Michaels, T. E.: Dislocation Dynamics and Single-Crystal Constitutive Relations: Shock-Wave Propagation and Precursor Decay. J. Appl. Phys. 41 (1970) 2330–2339.

    Article  Google Scholar 

  2. Hermann, W.; Hicks, D. L.; Young, E. G.: Attenuation of Elastic-Plastic Stress Waves. Shock Waves and the Mechanical Properties of Solids (J. J. Burke and V. Weiss Eds.). Syracuse: Syracuse University Press 1971.

    Google Scholar 

  3. Study, P.L.; Nidick, E.; Uribe, F.; Mukherjee, A. K.: Effects of Microstructure and Temperature on Dynamic Deformation of Single Crystal Zinc. Metallurgical Effects at High Strain Rates. New York: Plenum 1973.

    Google Scholar 

  4. Gupta, Y. M.; Duvall, G. E.; Fowles, G. R.: Dislocation Mechanism for Stress Relaxation in Shocked LiF. J. Appl. Phys. 46 (1975) 532–546.

    Article  Google Scholar 

  5. Weertman, J.: Dislocation Mechanics at High Strain Rates. Metallurgical Effects at High Strain Rates. New York: Plenum 1973.

    Google Scholar 

  6. Weiner, J. H.; Pear, M.: Breakdown in High-Speed Edge Dislocation Motion. Phil. Mag. 31 (1975) 679–688.

    Article  Google Scholar 

  7. Flinn, J. E.; Duvall, G. E.; Tinder, R. F.: Dislocation Multiplication in Lithium Fluoride Single Crystals under Impact Loading. J. Appl. Phys. 46 (1975) 3752–3749.

    Article  Google Scholar 

  8. Kumar, P.: An investigation of Dislocation Motion and Generation in LiF Single Crystals Subjected to Plate-Impact. Ph.D. Thesis, Brown University, May 1976.

    Google Scholar 

  9. Clifton, R. J.: Some Recent Developments in Plate Impact Experiments. Propagation of Shock Waves in Solids. New York, ASME 1976.

    Google Scholar 

  10. Kumar, P.; Clifton, R. J.: A Star-Shaped Flyer for Plate Impact Recovery Experiments. J. Appl. Phys. 48 (1977) to appear.

    Google Scholar 

  11. Kumar, P.; Clifton, R. J.: Optical Alignment of Impact Faces for Plate Impact Experiments. J. Appl. Phys. 48 (1977) 1366–1367.

    Article  Google Scholar 

  12. Barker, L. M.; Nollenbach, R. E.: Interferometer Technique for Measuring the Dynamic Mechanical Properties of Materials. Rev. Sci. Instr. 36 (1965) 1617–1620.

    Article  Google Scholar 

  13. Gilman, J. J.; Johnston, W. G.: The Origin and Growth of Glide Bands in Lithium Fluoride Crystals. Dislocations and Mechanical Properties of Crystals. New York, Wiley 1957.

    Google Scholar 

  14. Fanti, F.; Holder, J.; Granato, A. V.: Viscous Drag on Dislocations in LiF and NaCl. J. Acoust. Soc. Amer. 45 (1969), 1356–1366.

    Article  Google Scholar 

  15. Suzuki, T.; Ikushima, A.; Aoki, M.: Acoustic Attenuation Studies of the Frictional Force on a Fast Moving Dislocation. Acta Met. 12 (1964) 1231–1240.

    Article  Google Scholar 

  16. Mitchell, O. M.: Drag on Dislocations in LiF. J. Appl. Phys. 36 (1965) 2083–2084.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag, Berlin/Heidelberg

About this paper

Cite this paper

Clifton, R.J., Kumar, P. (1979). Dislocation Configurations Due to Plate Impact. In: Kawata, K., Shioiri, J. (eds) High Velocity Deformation of Solids. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67208-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67208-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67210-1

  • Online ISBN: 978-3-642-67208-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics