Skip to main content

Impact Failure Mechanisms in Fiber-Reinforced Composite Plates

  • Conference paper
High Velocity Deformation of Solids

Summary

Experimental studies of centrally impacted (0–90° lay-up) fiberglass-epoxy plates have revealed a sequential delamination mechanism, which appears to be a significant factor in the energy absorption at impact speeds below the speed required for perforation of the plate by a small rigid impactor. A linear relationship is found between impactor kinetic energy and total delamination area in this impact speed range (above a threshold speed) when the delamination does not extend to the edge of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sun, C.T.; Sierakowski, R.L.: Recent advances in developing FOD resistant composite materials. Shock and Vibration Digest 4 (2) (1975) 1–8.

    Google Scholar 

  2. Gupta, B.P.; Davids, N.: Penetration Experiments with Fiberglass-reinforced Plastics. Experimental Mechanics 6 (1976) 445–450.

    Article  Google Scholar 

  3. Askins, D.R.; Schwartz, H.S.: Mechanical Behavior of Reinforced Plastic Backing Materials for Ceramic Armor. AFML-TR-71–283, Wright-Patterson Air Force Base, Ohio 1972.

    Google Scholar 

  4. Ross, C.A.; Sierakowski, R.L.: Studies on the Impact Resistance of Composite Plates. Composites 4 (1973) 157–161.

    Article  Google Scholar 

  5. Cristescu, N.; Malvern, L.E.; Sierakowski, R.L.: Failure Mechanisms in Composite Plates Impacted by Blunt-Ended Penetrators. in Foreign Object Impact Damage to Composites, ASTM STP 568. Philadelphia: American Society for Testing Materials (1975) 159–172.

    Chapter  Google Scholar 

  6. Ross, C.A.; Cristescu, N.; Sierakowski, R.L.: Experimental Studies of Failure Mechanisms in Composite Plates. Fibre Science and Technology 9 (1976) 177–188.

    Article  Google Scholar 

  7. Ross, C.A. Sierakowski, R.L.: Delamination Studies of Impacted Composite Plates. Shock and Vibration Bulletin 46 Part 3. (1976) 173–182.

    Google Scholar 

  8. Sierakowski, R.L.; Malvern, L.E.; Ross, C.A.: Dynamic Failure Modes in Impacted Composite Plates, in Failure Modes in Composites III, ed. Chiao, T.T., New York: The Metallurgical Society of AIME (1976) 73–88.

    Google Scholar 

  9. Sierakowski, R.L.; Malvern, L.E.; Ross, C.A.; Strickland, W.S.: Failure of Composite Plates Subjected to Dynamic Loads. Proc. Army Symposium on Solid Mechanics, Watertown, Mass.: AMMRC 1976.

    Google Scholar 

  10. Sierakowski, R.L.; Ross, C.A.; Malvern, L.E.; Cristescu, N.: Studies on the Penetration Mechanics of Composite Plates. Final Report DAAG29–76-G-0085 to U.S. Army Research Office, University of Florida, Gainesville, Florida 1976.

    Google Scholar 

  11. Bascom, W.D.; Jones, R.L.; Timmons, CO.: Mixed Mode Fracture of Structural Adhesives, Adhesion Science and Technology Vol. 9-B, ed. L.H. Lee, New York: Plenum Press, 1975, p.501.

    Google Scholar 

  12. Freund, L.B.: Dynamic Crack Propagation. in The Mechanics of Fracture, ed. Erdogan, F., ASME, New York (1976) 105–134.

    Google Scholar 

  13. Paxson, T.L.; Lucas, R.A.: An experimental investigation of the velocity characteristics of a fixed boundary fracture model, in Dynamic Crack Propagation, ed. Sih, G.C., Leyden: Noordhoff (1973) 415–426.

    Google Scholar 

  14. Broutman, L.J.; Kobayashi, T.: Dynamic crack propagation studies in polymers, in Dynamic Crack Propagation, ed. Sih, G.C., Leyden: Noordhoff (1973) 215–225.

    Google Scholar 

  15. Yeung, P.; Broutman, L.J.: The Effect of Glass-Resin Interface Strength on the Impact Strength of Fiber Reinforced Plastics. Presented at 1977 Reinforced Plastics Conference, Society of the Plastic Industries, February 1977.

    Google Scholar 

  16. Mente, L.J.; Lee, W.N.: DEPROP — A Digital Computer Program for Predicting Dynamic Elastic-Plastic Response of Panels to Blast Loadings. AFATL-TR-76–71 Air Force Armament Laboratory, Eglin Air Force Base, Florida 1976.

    Google Scholar 

  17. Daniel, I.M.; Liber, T.: Wave Propagation in Fiber Composite Laminates. Final Report NASA CR-135086, IITRI D6073-III, IIT Research Institute, Chicago, Illinois, 1976.

    Google Scholar 

  18. Muldary, P.F.: Dynamics of Elastic Plates. Masters Thesis, University of Minnesota 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag, Berlin/Heidelberg

About this paper

Cite this paper

Malvern, L.E., Sierakowski, R.L., Ross, C.A., Cristescu, N. (1979). Impact Failure Mechanisms in Fiber-Reinforced Composite Plates. In: Kawata, K., Shioiri, J. (eds) High Velocity Deformation of Solids. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67208-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67208-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67210-1

  • Online ISBN: 978-3-642-67208-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics