Picosecond Diagnosis of CO2 Laser Produced Plasmas

  • M. C. Richardson
  • R. Fedosejevs
  • P. Jaanimagi
  • G. D. Enright
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 4)

Abstract

The investigation of the interaction of intense 10 μm laser radiation with solid targets has in the past few years acquired increased significance due to the potential application of CO2 lasers towards the achievement of laser fusion. In parallel to this effort, similar investigations are underway utilising 1μm radiation from high power Nd: glass lasers. Although in many respects the stringent experimental demands on plasma and laser diagnosis are similar in both investigations, the difference in operating wavelength range has forced the development of alternative approaches toward the achievement of these aims. This has become particularly evident in those areas involving ultrafast diagnosis of the laser pulse characteristics and in the characterisation of the plasma by fast optical analysis. Whereas in the near IR and visible region the relative abundance of available sensitive ultrafast detectors and techniques has permitted accurate laser beam characterisation, comparable diagnosis in the CO2 laser range has presented many challenging problems, which apparently will only be overcome by the adoption of novel techniques. In this paper, we wish to describe some of the approaches we have adopted to provide picosecond optical diagnostics in an investigation of the interaction of intense (>1014W cm-2) short (∿l ns) CO2 laser pulses with solid targets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.C. Richardson, N.H. Burnett, H.A. Baldis, G.D. Enright, R. Fedosejevs, N.R. Isenor, and I.V. Tomov. Laser Interaction and Related Phenomena, Vol. 4A, p. 161, pub. Plennum Press (1977).Google Scholar
  2. 2.
    Molectron type P-5-Q0 pyroelectric detector.Google Scholar
  3. 3.
    E.J. McLellan and J.S. Lunsford. IEEE J. Quant. Electron. QE-13, 38D, (1977).Google Scholar
  4. 4.
    T.C. Owen, L.W. Coleman, T.J. Burgess, Appl. Phys. Lett. 22, 349 (1973).CrossRefGoogle Scholar
  5. 5.
    J.F. Warner. Appl. Phys. Letts. 12, 222 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    P. Jaanimagi, M.C. Richardson and N.R. Isenor. (To be published).Google Scholar
  7. 7.
    A.C. Walker and A.J. Alcock. Rev. Sci. Inst. 47, 915 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    N.H. Burnett, H.A. Baldis, M.C. Richardson and S.D. Enright. Appl. Phys. Letts. 31, 172 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    E.A. McLean, J.A. Stamper, B.H. Ripin, H.R. Griem, J.M. McMahon, and S.E. Bodner. Appl. Phys. Letts. 31, 825 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    P. Jaanimagi, G.D. Enright and M.C. Richardson. (To be published).Google Scholar
  11. 11.
    R. Fedosejevs, I.V. Tomov, N.H. Burnett, G.D. Enright and M.C. Richardson. Phys. Rev. Letts. 39, 932 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Stamper, E.A. McLean, and B.H. Ripin. Phys. Rev. Lett. 40, 1177 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    I.V. Tomov, R. Fedosejevs and M.C. Richardson. Appl. Phys. Letts. 30, 164 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • M. C. Richardson
    • 1
  • R. Fedosejevs
    • 1
  • P. Jaanimagi
    • 1
  • G. D. Enright
    • 1
  1. 1.Division of PhysicsNational Research Council of CanadaOttawaCanada

Personalised recommendations