Synchronized Ultra-Short Pulse Generation and Streak-Camera Measurement with cw Mode-Locked Lasers

  • M. C. Adams
  • D. J. Bradley
  • W. Sibbett
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 4)


A picosecond streak camera operating in synchronism with C.W. mode-locked lasers provides real-time measurement of repetitive luminous phenomena with a temporal resolution of ~ 10 ps. The durations of pulses from an actively mode-locked argon ion laser (514.5 nm) have been measured to be ~ 90 ps and the system is shown to be particularly suitable for the measurement of dye fluorescence lifetimes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Bradley and G. H. C. New: Proc. IEEE, 62, 313 (1974) and references therein.CrossRefGoogle Scholar
  2. 2.
    D. J. Bradley and W. Sibbett: Appl. Phys. Lett., 27, 382 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    D. J. Bradley: Topics in Applied Physics, Vol. 18, Ultrashort Light Pulses, Ed. S. L. Shapiro (Springer Verlag, New York, 1977) pp. 17–81 and references therein.Google Scholar
  4. 4.
    E. G. Arthurs, D. J. Bradley, B. Liddy, F. O’Neill, A. G. Roddie, W. Sibbett and W. E. Sleat: Proc. of 10th International Congress on High Speed Photography (A.N.R.T. Paris, 1972) p. 117.Google Scholar
  5. 5.
    D. J. Bradley: UK Patent Application No. 34544/72 (US Patent 3973117 1976).Google Scholar
  6. 6.
    R. Hadland, K. Helbrough and A. E. Houston: Proc. 11th International Congress on High Speed Photography, Ed. P. J. Rolls (Chapman and Hall, London, 1975) p. 107.Google Scholar
  7. 7.
    D. J. Bradley: “Methods of generation and measurement of picosecond pulses in the VUV to infrared spectral regions”, Proc. of 32nd Symposium on Molecular Spectroscopy, Ohio, 1977. (To be published in Journal of Physical Chemistry).Google Scholar
  8. 8.
    J. P. Ryan and D. J. Bradley: unpublished.Google Scholar
  9. 9.
    I. S. Ruddock and D. J. Bradley: Appl. Phys. Lett., 26, 296 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    J. P. Heritage and R. K. Jain: Appl. Phys. Lett., 32, 41 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    E. D. Jones and M. A. Palmer: Optical and Quantum Electronics, 9, 451 (1977).CrossRefGoogle Scholar
  12. 12.
    The Harris oscillator was found to have a strong 50 Hz modulation of its output signal.Google Scholar
  13. 13.
    E. G. Arthurs, D. J. Bradley, A. G. Roddie: Chem. Phys. Lett., 22, 230 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    E. G. Arthurs, D. J. Bradley, P. N. Puntambekar, I. S. Ruddock and T. J. Glynn: Opt. Commun., 12, 360 (1975).ADSCrossRefGoogle Scholar
  15. 15.
    J. C. Mialocq, A. W. Boyd, J. Jaraudias and J. Sutton: Chem. Phys. Lett., 37, 236 (1976).ADSCrossRefGoogle Scholar
  16. 16.
    S. L. Shapiro, V. H. Kollman and A. J. Campillo: FEBS Lett., 54, 358 (1975).CrossRefGoogle Scholar
  17. 17.
    S. L. Shapiro, R. C. Hyer and A. J. Campillo: Phys. Rev. Lett., 31, 513 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • M. C. Adams
    • 1
  • D. J. Bradley
    • 1
  • W. Sibbett
    • 1
  1. 1.Optics Section, Blackett LaboratoryImperial CollegeLondonEngland

Personalised recommendations