Skip to main content

Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides

  • Chapter
Book cover Tidal Friction and the Earth’s Rotation

Abstract

Astronomical as well as palaeontological evidence suggests a secular retardation of the Earth’s rotation, which is attributed to tidal friction, i.e., mainly to the nonequilibrium and imperfectly fluid response of the Earth’s oceans, as well as to the imperfectly elastic response of the solid Earth to tidal forces. Estimates of the rotational energy dissipated in the oceans show that the oceanic term probably accounts for most of the dissipated energy (Pekeris and Accad, 1969; Pariiskii et al. , 1972; Kuznetsov, 1972; Brosche and Siindermann, 1972; Hendershott, 1972), although the exact share between both, the oceanic dissipation and the dissipation within the solid Earth, is not known. This is attributed to insufficiencies in the knowledge of the marine tides in the open oceans, and to the fact that nothing is known about the rheological mechanism of tidal dissipation within the solid Earth. Measurements of tidal gravity variations at the Earth’s surface, as well as precise observations of the tidal effect on satellite orbits have not yet revealed reliable results on imperfectly elastic body tides of the Earth. Model calculations give also only rough estimations of the tidal energy dissipated within the Earth, mainly because no information is available on the specific tidal dissipation function, i.e., the quality factor Q within the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alterman, Z., Jarosch, H., Pekeris, T.L.: Propagation of Raleigh Waves in the Earth, Geophys. J. 4, 219 (1961)

    Article  Google Scholar 

  • Anderson, D.L.: The anelasticity of the mantle. Geophys. J.R. Astron. Soc. 14, 135 (1967)

    Article  Google Scholar 

  • Anderson, D.L.: Ben-Menahem, A., Archambeau, C.B.: Attenuation of seismic energy in the upper mantle. J. Geophys. Res. 70, 1441 (1965)

    Article  Google Scholar 

  • Biot, M.A.: Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys. 25(11), 1385 (1954)

    Article  Google Scholar 

  • Biot, M.A.: Dynamics of viscoelastic anisotropic media. In: Proceedings of the Second Midwestern Conference on Solid Mechanics. Res. Ser. Engeneering Experiment Station, Purdue University, Lafayette, Ind.: 1955, Vol. 129

    Google Scholar 

  • Brosche, P., Sündermann, J.: On the torques due to tidal friction of the oceans and adjacent seas. In: Rotation of the Earth. Melchior, P., Yumi, S. (eds.). Dordrecht, Netherlands: D. Reidel, 1972, pp. 235-239

    Google Scholar 

  • Chapman, D.S., Pollack, H.N.: Global heat flow: A new look. Earth Planet. Sci. Lett. 28, 23 (1975)

    Google Scholar 

  • Farrell, W.E.: Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 10, 761 (1972)

    Article  Google Scholar 

  • Gordon, R.B., Davis, L.A.: Velocity and attenuation of seismic waves in imperfectly elastic rock. J. Geophys. Res. 73, 3917 (1968)

    Article  Google Scholar 

  • Groten, E., Brennecke, J.: Global interaction between Earth and Sea Tides. J. Geophys. Res. 78, 8519 (1973)

    Article  Google Scholar 

  • Harkrider, D.G.: Surface waves in multilayered elastic media, 2, Higher mode spectra and spectral ratios from point sources in plane layered Earth models, Bull. Seismol. Soc. Am. 60, 1937 (1970)

    Google Scholar 

  • Harrison, J.C., Ness, N.F., Longman, J.M., Forbes, R.F.S., Kraut, E.A., Slichter, L.B.: Earth-Tide observations made during the International Geophysical Year. J. Geophys. Res. 68, 1497 (1963)

    Article  Google Scholar 

  • Hendershott, M.C.: The effects of solid Earth deformation on global ocean tides. Geophys. J.R. Astron. Soc. 29, 389 (1972)

    Google Scholar 

  • Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. Space Phys. 2, 661 (1964)

    Article  Google Scholar 

  • Kuznetsov, M.V.: Calculation of the secular retardation of the Earth’s rotation from up-to-date cotidal charts. Izv. Acad. Sci. USSR Phys. Solid Earth 12, 779 (1972)

    Google Scholar 

  • Lagus, P.L., Anderson, D.L.: Tidal dissipation in the Earth and planets. Phys. Earth Planet. Interiors 1, 505 (1968)

    Article  Google Scholar 

  • Lamb, H.: Hydrodynamics. New York: Dover Publications Ltd., 1945

    Google Scholar 

  • Lambeck, K., Cazenave, A., Balmino, G.: Solid Earth and ocean tides estimated from satellite orbit analyses. Rev. Geophys. Space Phys. 12, 421 (1974)

    Article  Google Scholar 

  • Lee, E.H.: Stress analysis in visco-elastic bodies. Appl. Math. 13, 183 (1955)

    Google Scholar 

  • Longman, J.M.: A Green’s function for determining the deformation of the Earth under surface mass loads, 1, Theory. J. Geophys. Res. 67, 845 (1962)

    Article  Google Scholar 

  • Longman, J.M.: A Green’s function for determining the deformation of the Earth under surface mass loads, 2, Computations and numerical results: J. Geophys. Res. 68, 485 (1963)

    Article  Google Scholar 

  • Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. New York: Dover Publications Ltd., 1927

    Google Scholar 

  • MacDonald, G.J.F.: Tidal friction. Rev. Geophys. Space Phys. 2, 467 (1964)

    Article  Google Scholar 

  • Melchior, P., Kuo, J.T., Ducarme, B.: Earth tide gravity maps for Western Europe. Phys. Earth Planet. Interior 13, 184 (1976)

    Article  Google Scholar 

  • Morrison, L.V.: Tidal deceleration of the Earth’s rotation deduced from astronomical observations in the period AD 1600 to the present, paper presented at the International Symposium on “Tidal Friction and Earth’s Rotation”, held at Bielefeld in Sept. 1977

    Google Scholar 

  • Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth. New York: Cambridge University Press, 1960

    Google Scholar 

  • Munk, W.H.: Once again, tidal friction. Q. J. R. Astron. Soc. 9, 352 (1968)

    Google Scholar 

  • Pariiskii, N.N.: The Influence of Earth tides on the secular retardation of the Earth’s rotation. Astron. J. 37, No.3, 543 (1960)

    Google Scholar 

  • Pariiskii, N.N., Kuznetsov, M.V., Kuznetsova, L.V.: The effect of oceanic tides on the secular deceleration of the Earth’s rotation. Izv. Acad. Sci. USSR Phys. Solid Earth 2, 65 (1972)

    Google Scholar 

  • Pekeris, C.L., Accad, Y.: Solution of Laplace’s equations for the M2 tide in the world oceans. Phil. Trans. R. Soc. London, Ser. A 265, 413 (1969)

    Article  Google Scholar 

  • Pekeris, C.L., Jarosch, H.: The free oscillations of the Earth. In: Contributions in Geophysics in Honor of Beno Gutenberg. Benioff, H., Ewing, M., Howell, B., Press, F. (eds.). New York: Pergamon Press, 1958, Vol. 1, p. 171

    Google Scholar 

  • Quamar, A., Eisenberg, A.: The damping of core waves. J. Geophys. Res. 79, 785 (1974)

    Article  Google Scholar 

  • Slichter, L.B., MacDonald, G.J.F., Caputo, M., Hager, C.L.: Comparison of spectra for spheroidal modes excited by the Chilean and Alaskan quakes. Geophys. J.R. Astron. Soc. 11, 256 (1966)

    Google Scholar 

  • Slichter, L.B., Melchior, P.: Compte Rendu des Réunions de la Commission Permanente des marées terrestres ãl’Assémblée Géneralé d’Helsinki. Marées Terr. Bull. Inf. 21, 369 (1960)

    Google Scholar 

  • Smith, J.C., Born, G.H.: Secular acceleration of Phobos and Q of Mars. Icarus 27, 51 (1976)

    Article  Google Scholar 

  • Smith, S.W.: The anelasticity of the mantle. In: The Upper Mantle. Ritsema, A.R. (ed.). Tectonophysics 13, 601 (1972)

    Google Scholar 

  • Stacey, F.D.: Physics of the Earth. 2nd Ed. John Wiley and Sons, 1977 Vetter, U.R.: Stresses and viscosities in the asthenosphere. J. Geophys. 44,, 3 (1978)

    Google Scholar 

  • Vetter, U.R., Meissner, R.O.: Creep in geodynamic processes. Tectonophysics 42, 37 (19sss77)

    Article  Google Scholar 

  • Weertman, J.: The creep strength of the Earth’s mantle. Rev. Geophys. Space Phys. 8, 145 (1970)

    Article  Google Scholar 

  • Zschau, J.: Phase shifts of tidal see load deformations of the Earth’s surface due to low viscosity layers in the interior, Proceed 8th Intern. Symp. Earth Tides, held at Bonn 1977, 1978a, in press

    Google Scholar 

  • Zschau, J.: The influence of the Earth’s viscosity on deformations by marine tidal surface loads, Proceed. Intern. Meeting on “Earth Rheology and Late Cenozoic Isostatic Movements”, held at Stockholm 1977, 1978b, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zschau, J. (1978). Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides. In: Brosche, P., Sündermann, J. (eds) Tidal Friction and the Earth’s Rotation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67097-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67097-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09046-5

  • Online ISBN: 978-3-642-67097-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics