Advertisement

Kontextfreie Sprachen, Fortsetzung

  • Arto K. Salomaa
Chapter
  • 34 Downloads

Zusammenfassung

Wir kehren nun zur Diskussion der Familie ℒ2 zurück. Wir betrachten unter einem neuen Blickwinkel die Definition von kontextfreien Sprachen sowie die Mehrdeutigkeit, die syntaktische Analyse, Schranken in Ableitungen und Teilfamilien von kontextfreien Sprachen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Aho, A., Ullman, J.: The Theory of Parsing, Translation and Compiling. Englewood Cliffs, New Jersey. Prentice Hall 1972Google Scholar
  2. Book, R. V.: Terminal context in context-sensitive grammars. Center for Res. in Comput. Technol., Harvard Univ., Preprint no.10 (1971)Google Scholar
  3. Brainerd, B.: An analog of a theorem about context-free languages. Information Control 11, 561–567 (1968)MathSciNetCrossRefGoogle Scholar
  4. Chomsky, N., Schützenberger, M. P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems. Braffort, P., Hirschberg, D. (Hrsg.) S 118–161. Amsterdam: North Holland 1963Google Scholar
  5. Friant, J.: Langages Ultralineaires et Superlineaires, Nouvelles Caracterisations. Univ. de Montréal MA-102 (1968)Google Scholar
  6. Ginsburg, S., Greibach, S.: Mappings which preserve context-sensitive languages. Information Control 9, 563–582 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Ginsburg, S., Spanier, E.: Derivation-bounded languages. J. Comput. System Sei. 2, 228–250 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  8. Greibach, S.: A new normal form theorem for context-free phrase structure grammars. J. Assoc. Comput. Mach. 12, 42–52 (1965)MathSciNetzbMATHGoogle Scholar
  9. Greibach, S.: Füll AFL’s and nested iterated substitution. IEEE Conf. Record lOth Ann. Symp. Switching Automata Theory (1969) 222-230Google Scholar
  10. Gross, M.: Inherent ambiguity of minimal linear grammars. Information Control 7, 366–368 (1964)CrossRefGoogle Scholar
  11. Gruska, J.: A characterization of context-free languages. J. Comput. System Sei. 5, 353–364 (1971a)MathSciNetGoogle Scholar
  12. Gruska, J.: A few remarks on the index of context-free grammars and languages. Information Control 19, 216–223 (1971b)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Havel, I. M.: Strict Deterministic Languages. Univ. of California (Berkeley), Comput. Sei. Dept. Tech. Rep.No. 1 (1971)Google Scholar
  14. Hibbard, T., Ullian, J.: The independence of inherent ambiguity from complementedness among context-free languages. J. Assoc. Comput. Mach. 13, 588–593 (1966)MathSciNetzbMATHGoogle Scholar
  15. Knuth, D. E.: On the translation of languages from left to right. Information Control 8, 607–639 (1965)MathSciNetCrossRefGoogle Scholar
  16. Knuth, D. E.: Top-down syntax analysis. Acta Informatica 1, 79–110 (1971)zbMATHCrossRefGoogle Scholar
  17. Korenjak, A., Hopcroft, J.: Simple deterministic languages. IEEE Conf. Record 7th Ann. Symp. Switching Automata Theory (1966) 36-46Google Scholar
  18. Král, J.: A modification of a substitution theorem and some necessary and sufficient conditions for sets to be context-free. Math. Systems Theory 4, 129–139 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Kurki-Suonio, R.: Notes on top-down languages. BIT 9, 225–238 (1969)zbMATHCrossRefGoogle Scholar
  20. Lewis, II., P. M., Stearns, R.: Syntax-directed transduetion. J. Assoc. Comput. Mach. 15, 464–488 (1968)Google Scholar
  21. McWhirter, I.: Substitution expressions. J. Comput. System Sei. 5, 629–637 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  22. Maurer, H.: A Context-Free Language which is Inherently Ambiguous of Degree 3. Univ. of Calgary. Dept. of Math. Res. Paper No. 63 (1968)Google Scholar
  23. Maurer, H.: A direct proof of the inherent ambiguity of a simple context-free language. J. Assoc. Comput. Mach. 16, 256-260 (1969a)MathSciNetzbMATHGoogle Scholar
  24. Maurer, H.: Theoretische Grundlagen der Programmiersprachen. Hochschultaschenbücher 404, Bibliographisches Inst. 1969bGoogle Scholar
  25. Matthews, G.: Two-way languages. Information Control 10, 111–119 (1967)zbMATHCrossRefGoogle Scholar
  26. Nivat, M.: Transductions des Langages de Chomsky. Doctoral dissertation, Chapter 6, Grenoble Univ. 1967Google Scholar
  27. Révész, G.: Unilateral context sensitive grammars and left-to-right parsing. J. Comput. System Sei. 5, 337–352 (9171)CrossRefGoogle Scholar
  28. Rosenkrantz, D.: Matrix equations and normal forms for context-free grammars. J. Assoc. Comput. Mach. 14, 501–507 (1967)MathSciNetzbMATHGoogle Scholar
  29. Rosenkrantz, D., Stearns, R.: Properties of deterministic top-down grammars. Information Control 17, 226–256 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  30. Salomaa, A.: On the index of a context-free grammar and language. Information Control 14, 474–477 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  31. Schützenberger, M. P.: On a theorem of R. Jungen. Proc. Amer. Math. Soc. 13, 885–890 (1962)zbMATHCrossRefGoogle Scholar
  32. Stearns, R.: A regular test for pushdown machines. Information Control 11, 323–340 (1967)zbMATHCrossRefGoogle Scholar
  33. Stotskij, E. D.: Ponjatie indeksa v obobshcennykh grammatikakh. Akad. Nauk SSSR Nauchno-tekhn. Inform. Ser. 2, 16–17 (1969)Google Scholar
  34. Walters, D.: Deterministic context-sensitive languages, I and II. Information Control 17, 14–61 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  35. Wood, D.: The normal form theorem-another proof. Comput. J. 12, 139–147 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  36. Yntema, M.: Cap expressions for context-free languages. Information Control 18, 311–318 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Yntema, M.: Cap experssions for context-free languages. Information Control 18, 311–318 (1971)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Arto K. Salomaa
    • 1
  1. 1.Dept. of MathematicsTurku 50Finland

Personalised recommendations