Advertisement

Reguläre und kontextfreie Sprachen

  • Arto K. Salomaa
Chapter
  • 33 Downloads

Zusammenfassung

Die beiden nächsten Kapitel sind einem ausführlicheren Studium der Sprachfamilien ℒ i ,i = 3, 2, 1, 0, gewidmet. Wir beginnen mit den Famüien ℒ3 und ℒ2 d. h. den regulären und kontextfreien Sprachen. ℒ3 ist die einfachste Familie und ℒ2 vom Standpunkt der Anwendungen die wichtigste. Wir werden in Kapitel VI von einer höheren Warte aus kontextfreie Sprachen erneut betrachten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Chomsky, N.: Context-free grammars and pushdown storage. M.I.T. Res. Lab. Electron. Quart. Prog. Rep. 65 (1962)Google Scholar
  2. Chomsky, N., Schützenberger, M. P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems. P. Braffort, D. Hirschberg (Hrsg.), S 118–161. Amsterdam: North Holland 1963Google Scholar
  3. Conway, J. H.: Regular Algebra and Finite Machines. London: Chapman and Hall 1971zbMATHGoogle Scholar
  4. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. New York: McGraw-Hill 1966zbMATHGoogle Scholar
  5. Ginsburg, S., Rice, H. G.: Two families of languages related to ALGOL. J. Assoc. Comput. Mach. 9, 350–371 (1962)MathSciNetGoogle Scholar
  6. Ginzburg, A.: Algebraic Theory of Automata. New York: Academic Press 1968zbMATHGoogle Scholar
  7. Hopcroft, J. E., Ullman, J. D.: Formal Languages and Their Relation to Automata. Reading, Massachusetts: Addison-Wesley 1969Google Scholar
  8. McNaughton, R., Papert, S.: Counter-Free Automata, Research Monograph no. 65. Cambridge, Massachusetts: M.I.T. Press 1971zbMATHGoogle Scholar
  9. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata. IRE Trans. Electron. Comput. EC-9, 39–47 (1960)CrossRefGoogle Scholar
  10. Minsky, M., Papert, S.: Unrecognizable sets of numbers. J. Assoc. Comput. Mach. 13, 281–286 (1966)MathSciNetzbMATHGoogle Scholar
  11. Nasu, M., Honda, N.: Mappings induced by PGSM-mappings and some recursively unsolvable Problems of finite probabilistic automata. Information Control 15, 250–273 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Ogden, W.: A helpful result for proving inherent ambiguity. Math. Systems Theory 2, 191–194 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Parikh, R. J.: Language generating devices. M.I.T. Res. Lab. Electron. Quart. Prog. Rep. 60, 199–212 (1961)Google Scholar
  14. Paz, A.: Introduction to Probabilistic Automata. New York: Academic Press 1971zbMATHGoogle Scholar
  15. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  16. Salomaa, A.: Axiom systems for regulär expressions of finite automata. Ann. Univ. Turku. Ser. AI 75, (1964)Google Scholar
  17. Salomaa, A.: Tow complete axiom systems for the algebra of regulär events. J. Assoc. Comput. Mach. 13, 158–169(1966)MathSciNetzbMATHGoogle Scholar
  18. Salomaa, A.: Theory of Automata. Oxford: Pergamon 1969zbMATHGoogle Scholar
  19. Starke, P. H.: Abstrakte Automaten. VEB Deutscher Verlag der Wissenschaften 1969Google Scholar
  20. Thatcher, J. W.: Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. J. Comput. System Sei. 1, 317–322 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  21. Urponen, T.: On axiom systems for regulär expressions and on equations involving languages. Ann. Univ. Turku. Ser. AI 145 (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Arto K. Salomaa
    • 1
  1. 1.Dept. of MathematicsTurku 50Finland

Personalised recommendations