Advertisement

Gadolinium Gallium Garnet

  • Frank J. Bruni
Part of the Crystals book series (CRYSTALS, volume 1)

Abstract

Gadolinium gallium garnet (Gd3Ga5O12, or GGG) is perhaps the most perfect single crystal material being produced in large quantities in the world today. The achievement of this high state of perfection has been dictated by the rigid requirements of magnetic bubble devices. This paper discusses the, state of the art preparation of single crystal GGG. The sources and nature of the principle defect types are described as well as the growth techniques used to eliminate them. The paper also serves the dual purpose of a review containing a comprehensive bibliography of the literature on this garnet. This article reflects the author’s three years of experience in growing GGG crystals in sizes up to 3 inches in diameter, both in research and production.

Keywords

Crystal Growth Rotation Rate Dislocation Loop Growth Interface Gallium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Varnerin, L. J.: Approaches for making bubble-domain materials. IEEE Transactions on Magnetics MAG-7, 404 (1971)CrossRefGoogle Scholar
  2. 2.
    Krupke, W. F.: Transition probabilities in Nd: GGG. Optics Communications 12, No. 2, 210(1974)CrossRefGoogle Scholar
  3. 3.
    Linares, R. C.: Growth of garnet laser crystals. Solid State Communications 2, 229 (1964)CrossRefGoogle Scholar
  4. 4.
    Brandie, C. D., Miller, D. C., Nielsen, J. W.: The elimination of defects in Czochralski-grown rare-earth gallium garnets. J. of Crystal Growth 12, 195 (1972)CrossRefGoogle Scholar
  5. 5.
    O’Kane, D. F., Sadagopan, V., Geiss, E. A., Mandel, E.: Crystal growth and characterization of gadolinium gallium garnet. J. of the Electrochemical Society 120, No. 9, 1272 (1973)CrossRefGoogle Scholar
  6. 6.
    Brandie, C. D., Valentino, A. J.: Czochralski growth of rare earth gallium garnets. J. of Crystal Growth 12, 3 (1972)CrossRefGoogle Scholar
  7. 7.
    Carruthers, J. R., Kokta, M., Barns, R. L., Grasso, M.: Nonstoichiometry and crystal growth of gadolinium gallium garnet. J. of Crystal Growth 19, 204 (1973)CrossRefGoogle Scholar
  8. 8.
    Geller, S., Espinoza, G. P. Crandall, P. B.: J. Appl. Cryst. 2, 86 (1969 as quoted by Geller, S., Espinoza, G. P., Fulmer, L. D., Crandall, P. B.: Thermal expansion of some garnets. Mat. Res. Bull. 7, 1219 (1972)CrossRefGoogle Scholar
  9. 9.
    Allibert, M., Chatillon, C., Mareschal, J., Lissalde, F.: Étude du diagramme de phase dans le système Gd2O3-Ga2O3. J. of Crystal Growth 23, 289 (1974)CrossRefGoogle Scholar
  10. 10.
    Hiroshi, M., Nakamura, S., Matsumi, K.: Lattice parameter variations in Czochralski-grown gadolinium gallium garnet single crystals. Japanese Journal of Applied Physics 15, No. 3, 415 (1976)CrossRefGoogle Scholar
  11. 11.
    Linares, R. C.: Personal Communication (1977)Google Scholar
  12. 12.
    Geller, S., Espinoza, G. P., Fulmer, L. D., Crandall, P. B.: Thermal expansion of some garnets. Mat. Res. Bull. 7, 1219 (1972)CrossRefGoogle Scholar
  13. 13.
    Brandie, C. D., Barns, R. L.: Crystal Stoichiometry of Czochralski-grown rare-earth gallium garnets. J. Crystal Growth 26, 169 (1974)CrossRefGoogle Scholar
  14. 14.
    Kobb, E. D., Laudise, R. A.: Phase equilibrium of Y3Al5O12, hydrothermal growth of Gd3Ga5O12 and hydrothermal epitaxy of magnetic garnets. J. of Crystal Growth 29, 29 (1975)CrossRefGoogle Scholar
  15. 15.
    Nielsen, J. W.: Improved method for the growth of yttrium-iron and yttrium-gallium garnets. J. of Applied Physics. Supplement to vol. 31, No. 5, 51S (1960)CrossRefGoogle Scholar
  16. 16.
    Blum, S.: Personal Communication (1977)Google Scholar
  17. 17.
    Keig, G. A.: GGG substrate growth and fabrication. AIP Conference Proceedings No. 10 Magnetism and Materials. New York: American Institute of Physics (1972), p. 237Google Scholar
  18. 18.
    Kyle, T. R., Zydzik, G.: Automated crystal puller. Mat. Res. Bull. 8, 443 (1973)CrossRefGoogle Scholar
  19. 19.
    Zinnes, A. E., Nevis, B. E., Brandie, C. D.: Automatic diameter control of Czochralski-grown crystals. J. of Crystal Growth 19, 187 (1973)CrossRefGoogle Scholar
  20. 20.
    Valentino, A. J., Brandie, C. D.: Diameter control of Czochralski-grown crystals. J. Crystal Growth 26, 1 (1974)CrossRefGoogle Scholar
  21. 21.
    Garabedian, F. G., Kestigian, Michael, Cohen, M. L., von Thiina, P. C.: Automatic crystal diameter control system. Ceramic Bulletin 55, 726 (1976)Google Scholar
  22. 22.
    Cockayne, B., Roslington, J. M., Vere, A. W.: Macroscopic strain in facetted regions of garnet crystals. Journal of Materials Science 8, 382 (1973)CrossRefGoogle Scholar
  23. 23.
    Zydzik, G.: Interface transitions in Czochralski growth of garnets. Mat. Res. Bull. 10, 701 (1975)CrossRefGoogle Scholar
  24. 24.
    Glass, H. L.: X-ray double crystal analysis of facets in Czochralski-grown gadolinium gallium garnets. Mat. Res. Bull. 7, 1087 (1972)CrossRefGoogle Scholar
  25. 25.
    Glass, H. L., Besser, P. J., Hamilton, T. N., Stermer, R. L.: Substrate facet replication by epitaxial magnetic garnet films. Mat. Res. Bull. 8, 309 (1973)CrossRefGoogle Scholar
  26. 26.
    Cockayne, B., Lent, B., Roslington, J. M.: Interface shape changes during the Czochralski growth of gadolinium gallium garnet single crystals. Journal of Materials Science 11, 259 (1976)CrossRefGoogle Scholar
  27. 27.
    Takagi, K., Fukayawa, T., Ishii, M.: Inversion of the direction of the solid-liquid interface on the Czochralski growth of GGG crystals. J. Crystal Growth 32, 89 (1976)CrossRefGoogle Scholar
  28. 28.
    Becker, D., Zsoldos, E., Weber, A.: Dislocation configurations at inclusions in GGG (Gd3Ga5O12). phys. stat. sol. 34, 519 (1976)CrossRefGoogle Scholar
  29. 29.
    Matthews, J. W., Klokholm, E., Sadagopan, V., Plaskett, T. S., Mendel, E.: Dislocations in gadolinium gallium garnet (Gd3Ga5O12) I. Dislocation at inclusions. Acta Mettalurgica 21, 203 (1973)CrossRefGoogle Scholar
  30. 30.
    Matthews, J. W.: Generation of large prismatic dislocation loops at inclusions in crystals. phys. stat. sol. 15, 607 (1973)CrossRefGoogle Scholar
  31. 31.
    Glass, H. L.: X-ray topographic analysis of dislocations and growth bands in a melt grown gadolinium gallium garnet crystal. Mat. Res. Bull. 8, 43 (1973)CrossRefGoogle Scholar
  32. 32.
    Takagi, K., Fukayawa, T., Ishii, M.: Observation of helical dislocations in a GGG crystal by an etching method. J. Crystal Growth 36, 185 (1976)CrossRefGoogle Scholar
  33. 33.
    Stacy, W. T., Pistorius, J. A., Janssen, M. M.: Helical growth defects in gadolinium gallium garnet. J. Crystal Growth 22, 37 (1974)CrossRefGoogle Scholar
  34. 34.
    Matthews, J. W., Klokholm, E., Plaskett, T. S., Sadagopan, V.: Helical dislocations in gadolinium gallium garnet (Gd3Ga5O12). phys. stat. sol. 19, 671 (1973)CrossRefGoogle Scholar
  35. 35.
    Matthews, J. W., Klokholm, E., Plaskett, T. S.: Dislocations in gadolinium gallium garnet (Gd3Ga5O12): III. Nature of prismatic loops and helical dislocations. IBM Journal of Research and Development. 17, 426 (1973)CrossRefGoogle Scholar
  36. 36.
    Chaudhari, P.: Defects in garnets suitable for magnetic bubble domain devices. IEEE Transactions on Magnetics, 1972 Intermag Conference, Kyoto, Japan, p. 333Google Scholar
  37. 37.
    Miller, D. C.: Defects in garnet substrates and epitaxial magnetic garnet films revealed by phosphoric acid etching. J. of the Electrochemical Society 120, 678 (1973)CrossRefGoogle Scholar
  38. 38.
    Miller, D. C.: The etch rate of gadolinium gallium garnet in concentrated phosphoric acid of varying composition. J. of the Electrochemical Society 120, 1771 (1973)CrossRefGoogle Scholar
  39. 39.
    Lal, Krishan, Mader, S.: Characterization of dislocations in gadolinium gallium garnet single crystals by transmission X-ray topography. J. of Crystal Growth 32, 357 (1976)CrossRefGoogle Scholar
  40. 40.
    Cockayne, B., Roslington, J. M.: The dislocation-free growth of gadolinium gallium garnet single crystals. Journal of Materials Science 8, 601 (1973)CrossRefGoogle Scholar
  41. 41.
    Sakai, Masayuki, Hirai, Iesada, Tominaga, Hideki: Growth and finishing of Gd3Ga5O12 single crystal for bubble garnet substrate. Fujitsu Scientific & Technical Journal. June, 139 (1976)Google Scholar
  42. 42.
    Matthews, J. W., Mader, S.: A mechanism for dislocation multiplication at precipitates or inclusions in crystals. Scripta Metallurgica. 6, 1195 (1972)CrossRefGoogle Scholar
  43. 43.
    Hayes, D. J.: Personal Communication (1974)Google Scholar
  44. 44.
    Matthews, J. W., Klokholm, E., Plaskett, T. S.: Defects in magnetic garnet films. AIP Conference Proceedings, No. 10, Magnetism and Magnetic Materials, 1972, New York, American Institute of Physics 1973, 271Google Scholar
  45. 45.
    Belt, Roger, F., Moss, John P., Latore, Joseph: X-ray perfection and residual defects in gadolinium gallium garnet substrates. Mat. Res. Bull. 8, 357Google Scholar
  46. 46.
    Metselaar, R., Damen, J. P. M., Larsen, P. K., Huyberts, M. A. H.: Investigation of colour centres in gadolinium gallium garnet crystals. phys. stat. sol. 34, 665 (1976)CrossRefGoogle Scholar
  47. 47.
    Heinz, D. M., Moudy, L. A., Elkins, P. E., Klein, D. J.: Properties of the dysprosium-gadolinium gallium garnet system. North American Rockwell Electronics Group publication X71–1140/501 presented to 13th Electronic Materials Conference of AIME, San Francisco, (1971)Google Scholar
  48. 48.
    Mateika, D., Herrnring, J., Rath, R., Rusche, Ch.: Growth and investigation of Gd3-xCax Ga2-y-zZryGdz (Ga3)O12 garnets. J. of Crystal Growth 30, 311 (1975)CrossRefGoogle Scholar
  49. 49.
    Damen, J. P. M., Pistorius, J. A., Robertson, J. M.: Calcium gallium germanium garnet as a substrate for magnetic bubble application. Mat. Res. Bull. 12, 73 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Frank J. Bruni
    • 1
  1. 1.Synthetic Crystal Products DivisionAllied Chemical CorporationCharlotteUSA

Personalised recommendations