Skip to main content

Multiphoton Ionization Spectroscopy of Polyatomic Molecules

  • Conference paper

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 3))

Abstract

A short review of the historical development of two-photon and multi photon processes is given. Some of the interesting work on multiphoton ionization (MPI) of atomic systems is briefly mentioned.

In order to fully utilize MPI in spectroscopic or dynamic applications, an expression for the observed current needs to be derived in terms of molecular quantities. Before this can be accomplished the following question must be answered: Are the populations of the levels determined by the kinetic equations or are they pulsating with time due to the off-diagonal elements (Rabi cycle) in the density matrix formalism? For two-photon states in a three-photon ionization process, when the rate of the three-photon ionization is determined by the rate of the two-photon absorption from the ground state, one can use the arguments presented by Eberly and Ackerhalt to justify neglecting pulsation effects. It is further shown that for the cases considered, steady-state population of the two-photon level can be reached in the early part of the 10 nanosecond dye laser pulse used. Under these steady-state situations, kinetic equations gave an expression for the ratio of the current produced by circularly to that produced by linearly polarized lasers of the same intensity. The polarization ratio is shown to assist in assigning the two-photon state if a) the one-photon ionization process from the two-photon state is faster than the nonradiative relaxation process from the two-photon state or b) the ionization from the two-photon state is slower than the orientation (rotational) relaxation of the initially photoselected molecules in the two-photon state. The method is tested on three molecules with two-photon states of known symmetries and is found to give excellent agreement with predictions. The method is then extended to assign the lowest energy Rydberg states of hexatriene, pyridine and pyrazine in the 6.2 eV region. In hexatriene, the Rydberg state is found to be of an 1Ag symmetry (promotion to the 3p Rydberg orbital perpendicular to the molecular plane). For the N-heterocyclics, the results suggest that the lowest ionization potential is that for a nonbonding rather than for a π electron.

Contribution No. 4015.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.V.Bunkin, A.M.Prokhorov: Sov.Phys.JETP 19, 739 (1964)

    Google Scholar 

  2. D.C.O’Shea, W.R.Callen, W.T.Rhodes: An Introduction to Lasers and Their Applications (Addison-Wes1ey, Reading,Mass.1977) p.261

    Google Scholar 

  3. R.V.Ambartzumian, V.S.Letokhov: Chemical and Biochemical Applications of Lasers, Vol.III (Academic Press, New York 1977) p.167

    Google Scholar 

  4. V.S.Letokhov: Opt. Commun. 7, 59 (1973); see also [3] p.1

    Article  ADS  Google Scholar 

  5. H.A.Kramers, W.Heisenberg: Z.Phys.31 681 (1925)

    Article  ADS  Google Scholar 

  6. C.V.Raman, K.S.Krishnan: Nature 121, 501 (1928)

    Article  ADS  Google Scholar 

  7. M.Göppert-Mayer: Naturwissenschaften 17, 932 (1929)

    Article  Google Scholar 

  8. M.Göppert-Mayer: Ann.Phys. 9, 273 (1931)

    Article  MATH  Google Scholar 

  9. J.Brossel, B.Cagnac, A.Kaslter: C.R.Acad.Sci. 237, 984 (1953)

    Google Scholar 

  10. P.A.Franken, A.E.Hill, C.W.Peters, G.Weinreich: Phys.Rev.Lett. 7, 118 (1961)

    Article  ADS  Google Scholar 

  11. W.Kaiser, C.G.B.Garrett: Phys.Rev.Lett. 7, 229 (1961)

    Article  ADS  Google Scholar 

  12. I.D.Abella: Phys.Rev.Lett. 9, 453 (1962)

    Article  ADS  Google Scholar 

  13. W.L.Peticolas, J.P.Goldsborough, K.E.Reickhoff: Phys.Rev.Lett. 10., 43 (1963)

    Article  ADS  Google Scholar 

  14. J.A.Giordmaine, J.A.Howe: Phys.Rev.Lett.11, 207 (1963)

    Article  ADS  Google Scholar 

  15. J.J.Hopfield, J.M.Worlock, K.Park: Phys.Rev.Lett.11, 414 (1963)

    Article  ADS  Google Scholar 

  16. P.D.Maker, R.W.Terhune, C.M.Savage: Quantum Electronics (Columbia Univ. Press, New York 1964) p.1559

    Google Scholar 

  17. L.V.Keldish: Zh.Eksp.Teor.Fiz.47, 1945 (1964)

    Google Scholar 

  18. G.S.Voronov, N.B.Delone: Pis’ma Zh.Eksp.Teor.Fiz. 1, 42 (1965)

    Google Scholar 

  19. P.M.Johnson, M.R.Berman, D.Zakheim: J.Chem.Phys.62, 2500 (1975)

    Article  ADS  Google Scholar 

  20. G.Petty, C.Tai, F.W.Dalby: Phys.Rev.Lett.34, 1207 (1975)

    Article  ADS  Google Scholar 

  21. P.M.Johnson: J. Chem. Phys. 62, 4562 (1975)

    Article  ADS  Google Scholar 

  22. P.M.Johnson: J. Chem. Phys. 64, 4143 (1976)

    Article  ADS  Google Scholar 

  23. P.M.Johnson: J.Chem.Phys.64, 4638 (1976)

    Article  ADS  Google Scholar 

  24. D.H.Parker, S.J.Sheng, M.A.El-Sayed: J.Chem.Phys.65, 5534 (1976)

    Article  ADS  Google Scholar 

  25. R.E.Turner, V.Vaida, C.A.Molini, J.O.Berg, D.H.Parker: Chem.Phys.28, 47 (1978)

    Article  Google Scholar 

  26. D.H.Parker, P.Avouris: Chem.Phys.Lett.53, 515 (1978)

    Article  ADS  Google Scholar 

  27. J.S.Bakos: Advan.Electron.Electron Phys.36, 57 (1974)

    Article  Google Scholar 

  28. P.Lambropoulos: Adv.At.Mol.Phys.12, 87 (1976)

    Article  Google Scholar 

  29. P.Lambropoulos, C.Kikuchi, R.K.Osborn: Phys.Rev.144, 1081 (1966)

    Article  ADS  Google Scholar 

  30. G.S.Agrawal: Phys.Rev.A 1, 1445 (1970)

    Article  ADS  Google Scholar 

  31. C.Lecompte, G.Mainfray, C.Manus, F.Sanchez: Phys.Rev.A 11, 1009 (1975)

    Article  ADS  Google Scholar 

  32. L.A.Lompre, G.Mainfray, C.Manus, J.Thebault: Phys.Rev.A 15, 1604 (1977)

    Article  ADS  Google Scholar 

  33. P.Lambropoulos, Phys.Rev.Lett.30, 413 (1973)

    Article  ADS  Google Scholar 

  34. J.A.Duncanson, Jr., M.P.Strand, A.Lindgard, R.S.Berry: Phys.Rev.Lett.37, 987 (1976)

    Article  ADS  Google Scholar 

  35. E.A.Martin, L.Mandel: Appl.Optics 15, 2378 (1976)

    Article  ADS  Google Scholar 

  36. R.W.Solarz, C.A.May, L.R.Carlson, E.F.Worden, S.A.Johnson, J.A.Paisner, L.J.Radziemski,Jr.: Phys.Rev.A 14, 1129 (1976)

    Article  ADS  Google Scholar 

  37. M. Robin: Higher Excited States of Polyatomic Molecules, Vol.1,2 (Academic Press, New York 1974,1975)

    Google Scholar 

  38. W.M.McClain: J.Chem.Phys.55, 2789 (1971)

    Article  ADS  Google Scholar 

  39. V.M.Fain, Y.A.I.Khanin: Quantum Electronics (MIT Press, Cambridge, Mass. 1969) Vol. I & II

    Google Scholar 

  40. J.R.Ackerhalt, B.W.Shore: Phys.Rev.A 16, 277 (1977)

    Article  ADS  Google Scholar 

  41. J.R.Ackerhalt, J.H.Eberly: Phys. Rev. A 14, 1705 (1976)

    Article  ADS  Google Scholar 

  42. L.A.Lompre, G.Mainfray, C.Manus, S.Repoux, J.Thebault: Phys.Rev.Lett.36, 949 (1976)

    Article  ADS  Google Scholar 

  43. J.R.Ackerhalt: Phys.Rev.A 17, 293 (1978)

    Article  ADS  Google Scholar 

  44. S.Speiser, J.Jortner: Chem.Phys.Lett.44, 399 (1976)

    Article  ADS  Google Scholar 

  45. S.E. Wheatley, P. Agostini, S.N. Dixit, M.D. Levenson: Physica Scripta (to be published)

    Google Scholar 

  46. R.G.Bray, R.M.Hochstrasser: Mol.Phys.31, 1199 (1976)

    Article  ADS  Google Scholar 

  47. W.M. McClain, R.A. Harris: Excited States, Vol.3 (Academic Press,New York (in press))

    Google Scholar 

  48. A.J.Twarowski, D.S.Kliger: Chem.Phys.20, 259 (1977)

    Article  Google Scholar 

  49. R.McDiarmid: Chem.Phys.Lett.34, 130 (1975)

    Article  ADS  Google Scholar 

  50. A.J.Twarowski, D.S.Kliger: Chem.Phys.Lett.50, 36 (1977)

    Article  ADS  Google Scholar 

  51. D.Oesterhelt: Angew.Chem.Int.Ed.Engl.15, 17 (1976)

    Article  Google Scholar 

  52. K.Schulten, M.Karplus: Chem.Phys.Lett.14, 305 (1972)

    Article  ADS  Google Scholar 

  53. B.Hudson, B.Kohler: Annu.Rev.Phys.Chem. 25, 437 (1974)

    Article  ADS  Google Scholar 

  54. M.Nascimento, W.Goddard: private communication

    Google Scholar 

  55. D.H.Parker, J.O.Berg, M.A.El-Sayed: Chem.Phys.Lett. (to be published)

    Google Scholar 

  56. M.Kasha: Disc. Faraday Soc. 9, 14 (1950)

    Article  Google Scholar 

  57. W.von Niessen, G.H.F.Diercksen, L.S.Cederbaum: Chem.Phys.10, 345 (1975)

    Article  Google Scholar 

  58. W.R.Wadt, W.A.Goddard III, T.H.Dunning, Jr.: J.Chem.Phys.65, 4385 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parker, D.H., Berg, J.O., El-Sayed, M.A. (1978). Multiphoton Ionization Spectroscopy of Polyatomic Molecules. In: Zewail, A.H. (eds) Advances in Laser Chemistry. Springer Series in Chemical Physics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67054-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67054-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67056-5

  • Online ISBN: 978-3-642-67054-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics