Multiphoton Ionization Spectroscopy of Polyatomic Molecules

  • D. H. Parker
  • J. O. Berg
  • M. A. El-Sayed
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 3)


A short review of the historical development of two-photon and multi photon processes is given. Some of the interesting work on multiphoton ionization (MPI) of atomic systems is briefly mentioned.

In order to fully utilize MPI in spectroscopic or dynamic applications, an expression for the observed current needs to be derived in terms of molecular quantities. Before this can be accomplished the following question must be answered: Are the populations of the levels determined by the kinetic equations or are they pulsating with time due to the off-diagonal elements (Rabi cycle) in the density matrix formalism? For two-photon states in a three-photon ionization process, when the rate of the three-photon ionization is determined by the rate of the two-photon absorption from the ground state, one can use the arguments presented by Eberly and Ackerhalt to justify neglecting pulsation effects. It is further shown that for the cases considered, steady-state population of the two-photon level can be reached in the early part of the 10 nanosecond dye laser pulse used. Under these steady-state situations, kinetic equations gave an expression for the ratio of the current produced by circularly to that produced by linearly polarized lasers of the same intensity. The polarization ratio is shown to assist in assigning the two-photon state if a) the one-photon ionization process from the two-photon state is faster than the nonradiative relaxation process from the two-photon state or b) the ionization from the two-photon state is slower than the orientation (rotational) relaxation of the initially photoselected molecules in the two-photon state. The method is tested on three molecules with two-photon states of known symmetries and is found to give excellent agreement with predictions. The method is then extended to assign the lowest energy Rydberg states of hexatriene, pyridine and pyrazine in the 6.2 eV region. In hexatriene, the Rydberg state is found to be of an 1Ag symmetry (promotion to the 3p Rydberg orbital perpendicular to the molecular plane). For the N-heterocyclics, the results suggest that the lowest ionization potential is that for a nonbonding rather than for a π electron.


Rydberg State Multiphoton Ionization Polarization Ratio Lower Ionization Potential Time Dependent Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.V.Bunkin, A.M.Prokhorov: Sov.Phys.JETP 19, 739 (1964)Google Scholar
  2. 2.
    D.C.O’Shea, W.R.Callen, W.T.Rhodes: An Introduction to Lasers and Their Applications (Addison-Wes1ey, Reading,Mass.1977) p.261Google Scholar
  3. 3.
    R.V.Ambartzumian, V.S.Letokhov: Chemical and Biochemical Applications of Lasers, Vol.III (Academic Press, New York 1977) p.167Google Scholar
  4. 4.
    V.S.Letokhov: Opt. Commun. 7, 59 (1973); see also [3] p.1ADSCrossRefGoogle Scholar
  5. 5.
    H.A.Kramers, W.Heisenberg: Z.Phys.31 681 (1925)ADSCrossRefGoogle Scholar
  6. 6.
    C.V.Raman, K.S.Krishnan: Nature 121, 501 (1928)ADSCrossRefGoogle Scholar
  7. 7.
    M.Göppert-Mayer: Naturwissenschaften 17, 932 (1929)CrossRefGoogle Scholar
  8. 7a.
    M.Göppert-Mayer: Ann.Phys. 9, 273 (1931)MATHCrossRefGoogle Scholar
  9. 8.
    J.Brossel, B.Cagnac, A.Kaslter: C.R.Acad.Sci. 237, 984 (1953)Google Scholar
  10. 9.
    P.A.Franken, A.E.Hill, C.W.Peters, G.Weinreich: Phys.Rev.Lett. 7, 118 (1961)ADSCrossRefGoogle Scholar
  11. 10.
    W.Kaiser, C.G.B.Garrett: Phys.Rev.Lett. 7, 229 (1961)ADSCrossRefGoogle Scholar
  12. 11.
    I.D.Abella: Phys.Rev.Lett. 9, 453 (1962)ADSCrossRefGoogle Scholar
  13. 12.
    W.L.Peticolas, J.P.Goldsborough, K.E.Reickhoff: Phys.Rev.Lett. 10., 43 (1963)ADSCrossRefGoogle Scholar
  14. 13.
    J.A.Giordmaine, J.A.Howe: Phys.Rev.Lett.11, 207 (1963)ADSCrossRefGoogle Scholar
  15. 14.
    J.J.Hopfield, J.M.Worlock, K.Park: Phys.Rev.Lett.11, 414 (1963)ADSCrossRefGoogle Scholar
  16. 15.
    P.D.Maker, R.W.Terhune, C.M.Savage: Quantum Electronics (Columbia Univ. Press, New York 1964) p.1559Google Scholar
  17. 16.
    L.V.Keldish: Zh.Eksp.Teor.Fiz.47, 1945 (1964)Google Scholar
  18. 17.
    G.S.Voronov, N.B.Delone: Pis’ma Zh.Eksp.Teor.Fiz. 1, 42 (1965)Google Scholar
  19. 18.
    P.M.Johnson, M.R.Berman, D.Zakheim: J.Chem.Phys.62, 2500 (1975)ADSCrossRefGoogle Scholar
  20. 19.
    G.Petty, C.Tai, F.W.Dalby: Phys.Rev.Lett.34, 1207 (1975)ADSCrossRefGoogle Scholar
  21. 20.
    P.M.Johnson: J. Chem. Phys. 62, 4562 (1975)ADSCrossRefGoogle Scholar
  22. 20a.
    P.M.Johnson: J. Chem. Phys. 64, 4143 (1976)ADSCrossRefGoogle Scholar
  23. 21.
    P.M.Johnson: J.Chem.Phys.64, 4638 (1976)ADSCrossRefGoogle Scholar
  24. 22.
    D.H.Parker, S.J.Sheng, M.A.El-Sayed: J.Chem.Phys.65, 5534 (1976)ADSCrossRefGoogle Scholar
  25. 23.
    R.E.Turner, V.Vaida, C.A.Molini, J.O.Berg, D.H.Parker: Chem.Phys.28, 47 (1978)CrossRefGoogle Scholar
  26. 24.
    D.H.Parker, P.Avouris: Chem.Phys.Lett.53, 515 (1978)ADSCrossRefGoogle Scholar
  27. 25.
    J.S.Bakos: Advan.Electron.Electron Phys.36, 57 (1974)CrossRefGoogle Scholar
  28. 26.
    P.Lambropoulos: Adv.At.Mol.Phys.12, 87 (1976)CrossRefGoogle Scholar
  29. 27.
    P.Lambropoulos, C.Kikuchi, R.K.Osborn: Phys.Rev.144, 1081 (1966)ADSCrossRefGoogle Scholar
  30. 27a.
    G.S.Agrawal: Phys.Rev.A 1, 1445 (1970)ADSCrossRefGoogle Scholar
  31. 28.
    C.Lecompte, G.Mainfray, C.Manus, F.Sanchez: Phys.Rev.A 11, 1009 (1975)ADSCrossRefGoogle Scholar
  32. 29.
    L.A.Lompre, G.Mainfray, C.Manus, J.Thebault: Phys.Rev.A 15, 1604 (1977)ADSCrossRefGoogle Scholar
  33. 30.
    P.Lambropoulos, Phys.Rev.Lett.30, 413 (1973)ADSCrossRefGoogle Scholar
  34. 31.
    J.A.Duncanson, Jr., M.P.Strand, A.Lindgard, R.S.Berry: Phys.Rev.Lett.37, 987 (1976)ADSCrossRefGoogle Scholar
  35. 32.
    E.A.Martin, L.Mandel: Appl.Optics 15, 2378 (1976)ADSCrossRefGoogle Scholar
  36. 33.
    R.W.Solarz, C.A.May, L.R.Carlson, E.F.Worden, S.A.Johnson, J.A.Paisner, L.J.Radziemski,Jr.: Phys.Rev.A 14, 1129 (1976)ADSCrossRefGoogle Scholar
  37. 34.
    M. Robin: Higher Excited States of Polyatomic Molecules, Vol.1,2 (Academic Press, New York 1974,1975)Google Scholar
  38. 35.
    W.M.McClain: J.Chem.Phys.55, 2789 (1971)ADSCrossRefGoogle Scholar
  39. 36.
    V.M.Fain, Y.A.I.Khanin: Quantum Electronics (MIT Press, Cambridge, Mass. 1969) Vol. I & IIGoogle Scholar
  40. 37.
    J.R.Ackerhalt, B.W.Shore: Phys.Rev.A 16, 277 (1977)ADSCrossRefGoogle Scholar
  41. 38.
    J.R.Ackerhalt, J.H.Eberly: Phys. Rev. A 14, 1705 (1976)ADSCrossRefGoogle Scholar
  42. 39.
    L.A.Lompre, G.Mainfray, C.Manus, S.Repoux, J.Thebault: Phys.Rev.Lett.36, 949 (1976)ADSCrossRefGoogle Scholar
  43. 40.
    J.R.Ackerhalt: Phys.Rev.A 17, 293 (1978)ADSCrossRefGoogle Scholar
  44. 41.
    S.Speiser, J.Jortner: Chem.Phys.Lett.44, 399 (1976)ADSCrossRefGoogle Scholar
  45. 42.
    S.E. Wheatley, P. Agostini, S.N. Dixit, M.D. Levenson: Physica Scripta (to be published)Google Scholar
  46. 43.
    R.G.Bray, R.M.Hochstrasser: Mol.Phys.31, 1199 (1976)ADSCrossRefGoogle Scholar
  47. 43a.
    W.M. McClain, R.A. Harris: Excited States, Vol.3 (Academic Press,New York (in press))Google Scholar
  48. 44.
    A.J.Twarowski, D.S.Kliger: Chem.Phys.20, 259 (1977)CrossRefGoogle Scholar
  49. 45.
    R.McDiarmid: Chem.Phys.Lett.34, 130 (1975)ADSCrossRefGoogle Scholar
  50. 46.
    A.J.Twarowski, D.S.Kliger: Chem.Phys.Lett.50, 36 (1977)ADSCrossRefGoogle Scholar
  51. 47.
    D.Oesterhelt: Angew.Chem.Int.Ed.Engl.15, 17 (1976)CrossRefGoogle Scholar
  52. 48.
    K.Schulten, M.Karplus: Chem.Phys.Lett.14, 305 (1972)ADSCrossRefGoogle Scholar
  53. 48a.
    B.Hudson, B.Kohler: Annu.Rev.Phys.Chem. 25, 437 (1974)ADSCrossRefGoogle Scholar
  54. 49.
    M.Nascimento, W.Goddard: private communicationGoogle Scholar
  55. 50.
    D.H.Parker, J.O.Berg, M.A.El-Sayed: Chem.Phys.Lett. (to be published)Google Scholar
  56. 51.
    M.Kasha: Disc. Faraday Soc. 9, 14 (1950)CrossRefGoogle Scholar
  57. 52.
    W.von Niessen, G.H.F.Diercksen, L.S.Cederbaum: Chem.Phys.10, 345 (1975)CrossRefGoogle Scholar
  58. 53.
    W.R.Wadt, W.A.Goddard III, T.H.Dunning, Jr.: J.Chem.Phys.65, 4385 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • D. H. Parker
    • 1
  • J. O. Berg
    • 1
  • M. A. El-Sayed
    • 1
  1. 1.Department of ChemistryUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations