Advertisement

The Origin of Vibrational Dephasing in Liquids and Solids

  • C. B. Harris
  • P. A. Cornelius
  • R. M. Shelby
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 3)

Abstract

The dephasing of an ensemble of vibrating molecules results from molecular interactions which frequently occur on an extremely fast time scale. Vibrational dephasing times in condensed media are typically on the order of picoseconds; this fact, and the difficulties inherent in describing a molecule in dense matter, would seem to constitute serious obstacles to the understanding of dephasing processes. Nevertheless, several theoretical models for dephasing have been presented, [1] and new experimental methods using picosecond lasers have been developed [2]. In our recent work [3], [4] we have emphasized the role of energy exchange in vibrational dephasing. This exchange model is attractive both for its easy experimental realization, and for its usefulness in obtaining important molecular parameters and identifying the important dephasing channels.

Keywords

Stimulate RAMAN Scattering Probe Pulse Picosecond Laser Anharmonic Oscillator Fast Time Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. F. Fischer and A. Laubereau, Chem. Phys. Lett. 55, 189 (1978).ADSCrossRefGoogle Scholar
  2. 1a.
    D. W. Oxtoby and S. A. Rice, Chem. Phys. Lett., 42, 1 (1976)ADSCrossRefGoogle Scholar
  3. 1b.
    D. J. Diestler, Chem. Phys. Lett., 39, 39 (1976)ADSCrossRefGoogle Scholar
  4. 1c.
    P. A. Madden and R. M. Lynden-Bell, Chem. Phys. Lett., 38, 163 (1976).ADSCrossRefGoogle Scholar
  5. 2.
    A. Laubereau and W. Kaiser, in Chemical and Biochemical Applications of Lasers, C. B. Moore, ed. (Academic Press, 1976).Google Scholar
  6. 3.
    C. B. Harris, R. M. Shelby and P. A. Cornelius, Phys. Rev. Lett., 38, 1415 (1977).ADSCrossRefGoogle Scholar
  7. 4.
    C. B. Harris, R. M. Shelby and P. A. Cornelius, Chem. Phys. Lett., in press.Google Scholar
  8. 5.
    P. W. Anderson, J. Phys. Soc. Jap., 9, 316 (1954).ADSCrossRefGoogle Scholar
  9. 6.
    R. M. Shelby, C. B. Harris and P. A. Cornelius, J. Chem. Phys., submitted.Google Scholar
  10. 7.
    R. L. Carman, F. Shimizo, C. S. Wang and N. Bloembergen, Phys. Rev. A 2, 60 (1970).ADSCrossRefGoogle Scholar
  11. 8.
    A. Laubereau, G. Wochner and W. Kaiser, Phys. Rev. A, 13, 2212 (1976).ADSCrossRefGoogle Scholar
  12. 9.
    D. von der Linde, A. Laubereau and W. Kaiser, Phys. Rev. Lett., 26, 954 (1971)ADSCrossRefGoogle Scholar
  13. 9.
    A. Laubereau, D. von der Linde and W. Kaiser, Phys. Rev. Lett., 28, 1162 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • C. B. Harris
    • 1
  • P. A. Cornelius
    • 1
  • R. M. Shelby
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations