Skip to main content

Picosecond Studies of Unimolecular Processes

  • Conference paper
Advances in Laser Chemistry

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 3))

Abstract

FĂ–RSTER first postulated that a number of functional groups may undergo large pK changes as a consequence of electronic excitation [1]. For example aromatic carbonyl oxygens become more basic, while phenolic hydrogens become more acidic in the excited state [2,3]. WELLER applied this theory to explain the large Stokes shift seen in the fluorescence of salicylic acid and its methyl ester [4]. Upon absorption of a photon, a change of +2 in the pK of the carbonyl oxygen and of -6 in the phenol group drives the proton across the intramolecular bond [2,3]. The resulting zwitterion fluoresces at 450 nm. The ultraviolet emission at 340 nm of salicylic acid (and methyl salicylate) was attributed to molecules in which the protons were still bound to the oxygen of the phenol group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Förster, Z.Electrochem 54, 42 (1950)

    Google Scholar 

  2. A. Weller, Z. Phys. Chem. NF 17, 225 (1958).

    Article  Google Scholar 

  3. G. Jackson, G. Porter, Proc.Roy.Soc.(London), A260, 13 (1961).

    ADS  Google Scholar 

  4. A. Weiler, Z. Electrochem 60, 1144 (1956).

    Google Scholar 

  5. A. Weiler, Progress React.kinetics 1, 188 (1961).

    Google Scholar 

  6. H. Beens, K. H. Grellmann, M. Gurr, and A. H. Weiler, Disc. Faraday Soc. 39, 183 (1965).

    Article  Google Scholar 

  7. R. Fleming, J. M. Morris and G. W. Robinson, Chem.Phys.Lett.17, 91 (1976).

    Google Scholar 

  8. T. Tao, Biopolymers 8, 609 (1969).

    Article  Google Scholar 

  9. H. Shizuka, K. Matsui, Y. Hirata, and V. Tanaka, J.Phys.Chem. 81, 2243 10(1977).

    Article  Google Scholar 

  10. E. P. Ippen, A. Bergman, and C. V. Shank, Chem.Phys.Lett. 38, 611 (1976).

    Article  ADS  Google Scholar 

  11. D. Magde, M. W. Windsor, Chem.Phys.Lett. 38, 611 (1974).

    Google Scholar 

  12. K. Sandros, Acta.Chem.Scand. A30, 761 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, K.K., Kaufmann, K.J. (1978). Picosecond Studies of Unimolecular Processes. In: Zewail, A.H. (eds) Advances in Laser Chemistry. Springer Series in Chemical Physics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67054-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67054-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67056-5

  • Online ISBN: 978-3-642-67054-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics