Internal Energy Transfer in Isolated Molecules: Ergodic and Nonergodic Behavior

  • S. A. Rice
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 3)


I have been asked to present a broad overview of current understanding of the nature of intramolecular energy transfer in isolated molecules. In the short time available for this talk I can do no more than describe very briefly some attempts to answer the major questions associated with this subject. In my opinion these are:
  1. 1.

    Under what conditions, if any, is intramolecular energy exchange slow/rapid relative to other processes, for example photon emission, or isomerization, or fragmentation?

  2. 2.

    How does the intramolecular energy exchange depend on the energy of the molecule and the nature of the initial excitation?

  3. 3.

    If there are situations for which intramolecular energy exchange is slow relative to chemical reaction, why does this behavior occur? Does it derive from special characteristics of the molecular force fields? Are there dynamical or symmetry restrictions on the spectrum of states in these cases? Are these special situations commonly or rarely found?

  4. 4.

    Given the answers to (3), can we devise excitation methods and reaction conditions that permit enhancement of the selectivity of the chemistry that follows?



Solitary Wave Bond Dissociation Energy Toda Lattice Nonlinear Resonance Initial Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For reviews see P. J. Robinson and K. A. Holbrook, Unlmolecular Reactions, Wiley, New York (1972),Google Scholar
  2. 1a.
    W. Forst, Theory of Unlmolecular Reactions, Academic Press, New York (1973).Google Scholar
  3. 2.
    S.A. Rice in Excited States, Ed. E. C. Lim, Academic Press, New York (1975), Vol. 2, p. 111.Google Scholar
  4. 3.
    For example, the inference that vibrational relaxation on the ground electronic surface of HCCCl is slow, suggested by K. Evans, D. Heller, S.A. Rice and R. Scheps, J. Chem. Soc. Faraday Trans. 2 69, 856 (1973)Google Scholar
  5. 3a.
    is not in agreement with trajectory calculations by W. L. Hase, J. Chem. Phys. 66, 1523 (1977). I believe the trajectory calculations should be accepted as more reliable. Presumably the bottleneck in the photodissociation of HCCCl in crossing to the ground electronic state from the prepared excited state.ADSCrossRefGoogle Scholar
  6. 4.
    A survey covering the period up to 1974 can be found in Ref. [2]. For broader coverage and newer data see R. D. Levine and J. Jortner, Eds, Molecular Energy Transfer, Wiley, New York (1976).Google Scholar
  7. 5.
    V. G. Makhankov, Phys. Rept. Phys. Lett. C. 35, 1 (1978).MathSciNetGoogle Scholar
  8. 5a.
    A. C. Scott, F. Y. F. Chu and D. W. McLaughlin, Proc. IEEE, 61, 1443 (1973).MathSciNetADSCrossRefGoogle Scholar
  9. 5b.
    A. C. Scott, F. Y. F. Chu and D. W. McLaughlin, See also the collection of papers in Exact Treatment of Nonlinear Lattice Waves, Prog. Theor. Phys. Supp. 59, (1976).Google Scholar
  10. 6.
    See, for example, E. C. G. Sudershan and N. Mukunda, Classical Dynamics, Wiley, New York (1974).MATHGoogle Scholar
  11. 7.
    See, for example, V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics. Benjamin, New York (1968).MATHGoogle Scholar
  12. 7a.
    J. Moser, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, Princeton (1973).MATHGoogle Scholar
  13. 8.
    J. Ford, Adv. Chem. Phys. 24, 155 (1973).CrossRefGoogle Scholar
  14. 8a.
    J. Ford, in Fundamental Probelems in Statistical Mechanics, Ed. E. D. G. Cohen, North Holland, Amsterdam, Vol. 3 (1975) p. 215.Google Scholar
  15. 9.
    K.C. Mo, Physica 57, 445 (1972).ADSCrossRefGoogle Scholar
  16. 10.
    J. W. Duff and P. Brumer, J. Chem. Phys. 67, 4898 (1977).ADSCrossRefGoogle Scholar
  17. 11.
    G. M. Zaslavskii and B. V. Chirikov, Sov. Phys. Usp. 14, 549 (1972);MathSciNetADSMATHCrossRefGoogle Scholar
  18. 11a.
    B. V. Chirikov, Research Concerning the Theory of Nonlinear Resonance and Stochasticity, Novosibirsk USSR (1969) unpublished, translated as CERN 71–40, Geneva (1971).Google Scholar
  19. 12.
    H. Poincare, Les Methodes Nouvelles de la Mecanique Cleste, Dover, New York, (1957).Google Scholar
  20. 13.
    M. Toda, Prog. Theor. Phys. Suppl. 45, 174 (1970);CrossRefGoogle Scholar
  21. 13a.
    M. Toda, Prog. Theor. Phys. Suppl. 59, 1 (1976);CrossRefGoogle Scholar
  22. 13b.
    M. Toda, Phys. Rept. Phys. Lett. C (Netherlands) 18, 1 (1975).MathSciNetGoogle Scholar
  23. 14.
    M. Henon and C. Heiles, Astron. J. 69, 73 (1964).MathSciNetADSCrossRefGoogle Scholar
  24. 15.
    J. Ford, S. D. Stoddard and J. S. Turner, Prog. Theor. Phys. 50, 1547 (1973).ADSCrossRefGoogle Scholar
  25. 16.
    M. Henon, Phys. Rev. B9, 1921 (1974).MathSciNetADSGoogle Scholar
  26. 16a.
    H. Flaschka, Phys. Rev. B9, 1924 (1974).MathSciNetADSGoogle Scholar
  27. 17.
    G. H. Walker and J. Ford, Phys. Rev. 188, 416 (1969).MathSciNetADSCrossRefGoogle Scholar
  28. 17a.
    J. Ford and G. H. Lunsford, Phys. Rev. A 1, 59 (1970).ADSGoogle Scholar
  29. 18.
    B. Barbanis, Astron. J. 71, 415 (1966).ADSCrossRefGoogle Scholar
  30. 18a.
    G. Contoupolos, Astrophys. J. 138, 1297 (1963).MathSciNetADSCrossRefGoogle Scholar
  31. 18b.
    G. Contoupolos, Astron. J. 75, 96 (1970);ADSCrossRefGoogle Scholar
  32. 18c.
    G. Contoupolos, Astron. J. 76, 147 (1971).ADSCrossRefGoogle Scholar
  33. 19.
    M. C. Carotta, C. Ferrarlo, G. L. Vecchîo and L. Galgani, Phys. Rev. A17, 786 (1978);ADSGoogle Scholar
  34. 19a.
    P. Bochieri, A. Scotti, B. Bearzi and A. Loinger, Phys. Rev..A2, 2013 (1970);ADSGoogle Scholar
  35. 19b.
    M. Casartelli, E. Diana, L. Galgani and A. Scotti, Phys. Rev. A 13, 1921 (1976);ADSGoogle Scholar
  36. 19c.
    N. Saito and H. Hirooka, J. Phys. Soc. Japan 23, 167 (1967);ADSCrossRefGoogle Scholar
  37. 19d.
    N. Saito, N. Ooyama, Y. Aizawa and H. Hirooka, Prog. Theor. Phys. Supp.45, 209 (1970);CrossRefGoogle Scholar
  38. 19e.
    N. Saito and A. Ichimuar, Prog. Theor. Phys. Supp. 59, 137(1976).CrossRefGoogle Scholar
  39. 20.
    D. W. Oxtoby and S. A. Rice, J. Chem. Phys. 65, 1676 (1976).ADSCrossRefGoogle Scholar
  40. 21.
    E. B. Wilson, J. C. Decius and P. C. Cross, Molecular Vibrations, McGraw Hill, New York (1955).Google Scholar
  41. 22.
    C. A. Parr, Ph. D. Dissertation, California Institute of Technology (1968)Google Scholar
  42. 23.
    I am indebted to John Dancz for the initial draft of this section.Google Scholar
  43. 24.
    The research literature on solitary waves is reviewed in Ref. [5]. For a general introduction see G. B. Witham, Linear and Nonlinear Waves, Wiley, New York (1974).Google Scholar
  44. 25.
    E. Fermi, J. Pasta and S. Ulam, Los Alamos Report LA-1940 (1955), in Enrico Fermi, Collected Works, Univ. Chicago Press, Chicago Vol. 2 p 978.Google Scholar
  45. 25a.
    V. E. Zakharov, Sov. Phys. J.E.T.P. 38, 108 (1974).ADSGoogle Scholar
  46. 26.
    N. J. Zabusky, Comp. Phys. Commun. 5, 1 (1973).ADSCrossRefGoogle Scholar
  47. 27.
    T. Rolfe, S. A. Rice and J. Dancz, in preparation.Google Scholar
  48. 28.
    J. Dancz and S. A. Rice, J. Chem. Phys. 67, 1418 (1977).ADSCrossRefGoogle Scholar
  49. 29.
    T. Rolfe, private communication.Google Scholar
  50. 29a.
    G. Casati and J. Ford, Phys. Rev. A 12, 1702 (1975).ADSGoogle Scholar
  51. 30.
    Fora review see I. C. Percival, Adv. Chem. Phys. 36, 1 (1977);CrossRefGoogle Scholar
  52. 30a.
    I. C. Percival, J. Phys. A. 7, 794 (1974);MathSciNetADSCrossRefGoogle Scholar
  53. 30b.
    I. C. Percival and N. Pomphrey, J. Phys. B 31, 97 (1976).Google Scholar
  54. 31.
    M. V. Berry and M. Tabor, Proc. Roy. Soc. (London) A 349, 101 (1976).MathSciNetADSCrossRefGoogle Scholar
  55. 32.
    S. Chapman, B. C. Garrett and W. H. Miller, J. Chem. Phys. 64, 502 (1976);MathSciNetADSCrossRefGoogle Scholar
  56. 32a.
    W. H. Miller, J. Chem. Phys. 63, 996 (1975).ADSCrossRefGoogle Scholar
  57. 33.
    D.W. Noid and R. A. Marcus, J. Chem. Phys. 62, 2119 (1975);ADSCrossRefGoogle Scholar
  58. 33a.
    W. Eastesand, R. A. Marcus, J. Chem. Phys. 61, 4301 (1974).ADSCrossRefGoogle Scholar
  59. 34.
    A. Einstein, Verhand. Deut. Phys. Ges. 19, 82 (1917).Google Scholar
  60. 35.
    K. S. J. Nordholm and S. A. Rice, J. Chem. Phys. 61, 203 (1974);ADSCrossRefGoogle Scholar
  61. 35a.
    K. S. J. Nordholm and S. A. Rice, J. Chem. Phys. 61, 768 (1974).ADSCrossRefGoogle Scholar
  62. 36.
    N. Pomphrey, J. Phys. B. 7, 1909 (1974);ADSCrossRefGoogle Scholar
  63. 37.
    K. S. J. Nordholm and S. A. Rice, J. Chem. Phys. 62, 157 (1975).ADSCrossRefGoogle Scholar
  64. 38.
    See, for example M. S. Child, Molecular Collision Theory, Academic Press, New York (1974).Google Scholar
  65. 39.
    F. H. Mies, J. Chem. Phys. 51, 787, 798 (1969).ADSCrossRefGoogle Scholar
  66. 40.
    S. A. Rice, I. McLaughlin and J. Jortner, J. Chem. Phys. 49, 2756 (1968).ADSCrossRefGoogle Scholar
  67. 41.
    K. G. Kay and S. A. Rice, J. Chem. Phys. 57, 3041 (1972).ADSCrossRefGoogle Scholar
  68. 42.
    E. J. Hellerand, S. A. Rice, J. Chem. Phys. 61, 936 (1974).ADSCrossRefGoogle Scholar
  69. 43.
    M. Muthukumar and S. A. Rice submitted to J. Chem. Phys.Google Scholar
  70. 44.
    K.G. Kay, J. Chem. Phys. 61, 5205 (1974).ADSCrossRefGoogle Scholar
  71. 45.
    W. M. Gelbart, S. A. Rice and K. F. Freed, J. Chem. Phys. 57, 4699 (1972).ADSCrossRefGoogle Scholar
  72. 46.
    S. Michaelson, private communication.Google Scholar
  73. 47.
    C. D. Contrail, S. M. Freund and J. L. Lyman, Los Alamos Report LA-UR-77–24 in press.Google Scholar
  74. 48.
    E. Grant, M. Coggiola, Y. T. Lee, P. Shaltz and Y. Shen, paper presented at 2nd Winter Colloquium on Laser Induced Chemistry, Park City, Utah, Feb. 13–16, 1977;Google Scholar
  75. 48a.
    M. J. Coggiola, P. A. Schulz, Y. T. Lee and Y. R. Shen, Phys. Rev. Lett. 38, 17 (1977).ADSCrossRefGoogle Scholar
  76. 49.
    J. M. Parson and Y. T. Lee, J. Chem. Phys. 56, 4658 (1972);ADSCrossRefGoogle Scholar
  77. 49a.
    J. M. Farrar and Y. T. Lee, J. Chem. Phys. 65, 1414 (1976).ADSCrossRefGoogle Scholar
  78. 50.
    J. G. Moehlmann, J. I. Gleaves, J. W. Hudgens and J. D. McDonald, J.Chem. Phys. 60, 4790 (1974).ADSCrossRefGoogle Scholar
  79. 51.
    D. J. Zvijac and J. C. Light, Chem. Phys. 21, 411, 433 (1977).ADSCrossRefGoogle Scholar
  80. 52.
    H. Schroder, H. J. Neusser and E. W. Schlag, Chem. Phys. Lett. 54, 4 (1978).ADSCrossRefGoogle Scholar
  81. 53.
    E. R. Grant and D. L. Bunker, J. Chem. Phys. 68, 628 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • S. A. Rice
    • 1
  1. 1.The Department of Chemistry and The James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations