Some Geologic Colloid Systems

  • Shmuel Yariv
  • Harold Cross


The sedimentary cycle includes the hydrosphere, the atmosphere, the pedosphere, and sedimentary rocks in the lithosphere. Clay minerals, zeolites, hydrated oxides and hydroxides, mainly of Si, Fe, Mn, and Al, and some organic macromolecules are responsible for most colloid properties of geologic systems that constitute the sedimentary cycle. The clay minerals, which generally comprise the greater part of the colloid fraction, are so-called from the term used by sedimentologists and soil scientists for the fraction of particles having a very small size, the “clay fraction”. Although certain clay deposits contain well-defined crystalline particles, most clay minerals occur as particles too small to be resolved by the ordinary microscope. Furthermore, a wide distribution of particle sizes is frequently present.


Humic Substance Humic Acid Clay Mineral Fulvic Acid Pyroclastic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, T.: Chemical composition and molecular weight distribution of dissolved organic matter produced by bacterial degradation of green algae. Geochem. J. 6, 93–104 (1972)CrossRefGoogle Scholar
  2. Arrowsmith, A., Hedle, A. B., Beer, J. M.: Particle formation from NH3-SO2-H2O air gas phase reactions. Nature Phys. Sci. (London) 244, 104–105 (1973)Google Scholar
  3. Askenasy, P. E., Dixon, J. B., McKee, T. R.: Spheroidal halloysite in a Guatemalan soil. Soil Sci. Soc. Am. Proc. 37, 799–802 (1973)CrossRefGoogle Scholar
  4. Bach, W.: Global air pollution and climatic changes. Rev. Geophys. Space Phys. 14, 429–474 (1976)CrossRefGoogle Scholar
  5. Bailey, J. C.: Fluorine in granitic rocks and melts, a review. Chem. Geol. 19, 1–42 (1977)CrossRefGoogle Scholar
  6. Bailey, S. W., Brindley, G. W., Johns, W. D., Martin, R. T., Ross, M.: Summary of national and international recommendations on clay mineral nomenclature. Clays Clay Miner. 19, 129–132 (1971)CrossRefGoogle Scholar
  7. Barry, R. G., Chorley, R. J.: Atmosphere, weather and climate. New York: Holt, Rinehart and Winston, Inc. 1970Google Scholar
  8. Beers, J. R., Stewart, G. L.: Microzooplankton and its abundance relative to larger Zooplankton and other seston components. Mar. Biol. 4, 182–189 (1969)CrossRefGoogle Scholar
  9. Berger, W. H.: Planktonie foraminifera: selective solution and paleoclimatic interpretation. Deep-Sea Res. 75, 31–44 (1968)Google Scholar
  10. Berner, R. A., Morse, J. W.: Dissolution kinetics of calcium carbonate in sea water. IV. Theory of calcite dissolution. Am. J. Sci. 274, 108–134 (1974)CrossRefGoogle Scholar
  11. Blifford, I. H., Jr.: Tropospheric aerosols. J. Geophys. Res. 75, 3099–3103 (1970)CrossRefGoogle Scholar
  12. Bolland, M. D. A., Posner, A. M., Quirk, J. P.: Surface charge on kaolinites in aqueous suspension. Aust. J. Soil Res. 14, 197–216 (1976)CrossRefGoogle Scholar
  13. Botterill, J. S. M., Bessant, D. J.: The flow properties of fluidized solids. Powder Technol. 8, 213–222 (1973).CrossRefGoogle Scholar
  14. Bowen, N. L.: The evolution of the igneous rocks. Princeton, N. J.: Princeton Univ. Press 1928Google Scholar
  15. Bramlette, M. N.: Pelagic sediments. In: Oceanography. Sears, M. (ed.). Publ. Am. Assoc. Adv. Sci. No. 67, 1961, pp. 345–366Google Scholar
  16. Bruce, P. N., Revel-Chion, L.: Bed porosity in three phase fluidization. Powder Technol. 10, 243–249 (1974)CrossRefGoogle Scholar
  17. Buerger, M. J.: The structural nature of the mineraliser action of fluorine and hydroxyl. Am. Mineral. 33, 744–747 (1948)Google Scholar
  18. Burnham, C. W.: Hydrothermal fluids and the magmatic stage. In: Geochemistry of hydrothermal ore deposits. Barnes, H. L. (ed.). New York: Holt, Rinehart and Winston, Inc., 1967, pp. 34–76Google Scholar
  19. Burnham, C. W.: Water and magmas, a mixing model. Geochim. Cosmochim. Acta 39, 1077–1084 (1975)CrossRefGoogle Scholar
  20. Carmichael, I. S. E., Turner, F. J., Verhoogen, J.: Igneous petrology, New York: McGraw-Hill (1974)Google Scholar
  21. Carr, R. M., Chih, H.: Complexes of halloysite with organic compounds. Clay Miner. 9, 153–166 (1971)CrossRefGoogle Scholar
  22. Chave, K. E., Suess, E.: Calcium carbonate saturation in sea water. Effect of organic matter. Limnol Oceanogr. 15, 633–637 (1970)CrossRefGoogle Scholar
  23. Cheshire, M. V, Goodman, B. A., Mundie, C. M.: The composition of soil humus. Welsh Soil Diss. Group. Rep. 16, 73–90 (1975)Google Scholar
  24. Chesselet, R., Morelli, J., Buat Menard, P.: Some aspects of the geochemistry of marine aerosol. Nobel Symposium 20, The changing chemistry of the oceans. Dyrssen, D., Jagner, D. (eds.), Stockholm: Almquist and Wilksell, 1971, pp. 93–114Google Scholar
  25. Chesselet, R., Morelli, J., Buat-Menard, P.: Variations in ionic ratios between reference sea water and marine aerosols. J. Geophys. Res. 77, 5116–5131 (1972)CrossRefGoogle Scholar
  26. Chester, R., Elderfield, H., Griffin, J. J., Johnson, L. R., Padgham, R. C.: Eolian dust along the margins of the Atlantic Ocean. Mar. Geol., 77, 91–105 (1972)CrossRefGoogle Scholar
  27. Christiansen, R. L., Lipman, P. W.: Emplacement and thermal history of arhyolite lava flow near Fortymile Canyon, Southern Nevada. Geol. Soc. Am. Bull. 77, 671–684 (1966)CrossRefGoogle Scholar
  28. Churchman, G. J., Aldridge, L. P., Carr, R. M.: The relationship between the hydrated and dehydrated states of an halloysite. Clays Clay Miner. 20, 241–246 (1972)CrossRefGoogle Scholar
  29. Collins, K., McGowan, A.: The form and function of microfabric features in a variety of natural soils. Geotechnique 24, 223–254 (1974)CrossRefGoogle Scholar
  30. Cruz, M., Jacobs, H., Fripiat, J. J.: The nature of the cohesion energy in kaolin minerals. Proc. Int. Clay Conf., Madrid, Serratosa, S. W. (ed.) Madrid: Div. Ciencias C. S. I. C., 1973, pp. 35–46Google Scholar
  31. Cunnold, D. M., Gray, C. R., Merrutt, D. C.: Stratospheric aerosol layer detection. J. Geophys. Res. 78, 920–931 (1973)CrossRefGoogle Scholar
  32. Darby, D. A., Burckle, L. H., Clark, D. L.: Airborne dust on the Arctic pack ice, its composition and fallout rate. Earth Planet. Sci. Lett. 24, 166–172 (1974)CrossRefGoogle Scholar
  33. Daumas, R. A.: Variations of particulate proteins and dissolved amino acids in coastal seawater. Mar. Chem. 4, 225–242 (1976)CrossRefGoogle Scholar
  34. Daumas, R. A., Laborde, P. L., Marty, J. C., Saliot, A.: Influence of sampling method on the chemical composition of water surface film. Limnol. Oceanogr. 21, 319–326 (1976)CrossRefGoogle Scholar
  35. Degens, E. T.: Molecular nature of nitrogenous compounds in sea water and marine sediments. In: Proc. Symp. Organic Matter in Natural Waters, 1968. Wood, D. H. (ed.). Univ. Alaska: Occ. Pub. No. 1, Inst. Mar. Sci., 1970, 77–106Google Scholar
  36. De Jong, J. A. H., Nomden, J. F.: Homogeneous gas-solid fluidization. Powder Technol. 9, 91–97 (1974)CrossRefGoogle Scholar
  37. Delamy, A. C., Pollock, W. H., Shedlovsky, J. P.: Tropospheric aerosol, the relative contribution of marine and continental components. J. Geophys. Res. 78, 6249–6265 (1973)CrossRefGoogle Scholar
  38. de Vries, A. J.: Morphology, coalescence and size distribution of foam bubbles. In: Adsorptive bubble separation techniques. Lemlich, R. (ed.). New York: Academic Press, 1972, pp. 7–31Google Scholar
  39. Dionne, J. C.: Monroes, a type of so-called mud volcanoes in tidal flats. J. Sediment. Petrol. 43, 848–856 (1973)Google Scholar
  40. Dionne, J. C.: Miniature mud volcanoes and other injection features in tidal flats. James Bay, Québec. Can. J. Earth Sci. 13, 422–428 (1976)CrossRefGoogle Scholar
  41. Dixon, J. B., McKee, T. R.: Internal and external morphology of tubular and spheroidal halloysite particles. Clays Clay Miner. 22, 127–137 (1974)CrossRefGoogle Scholar
  42. Dzulynski, S., Walton, E. K.: Sedimentary features of flysch and greywackes. Amsterdam: Elsevier 1965Google Scholar
  43. Edmond, J. M.: The thermodynamic description of the C02 system in seawater, development and current status. Proc. R. Soc. Edinburgh, Sect. B 72, 371–380 (1972)Google Scholar
  44. Edmond, J. M.: On the dissolution of carbonate and silicate in the deep ocean. Deep Sea Res. 21, 455–480 (1974)Google Scholar
  45. Edmond, J. M., Gieskes, J. M. T. M.: On the calculation of the degree of saturation of seawater in respect with calcium carbonate under in situ conditions. Geochim. Cosmochim. Acta 34, 1261–1291 (1970)CrossRefGoogle Scholar
  46. Ewart, A: Mineralogy and petrogenesis of the Whakamaru ignimbrite in the Maraetai area of the Taupo volcanic zone, New Zealand, N. Z. J. Geol. Geophys. 8, 611–677 (1965)Google Scholar
  47. Faust, T. G., Fahey, J. J.: The serpentine group minerals. U. S. Geol. Survey Prof. Paper, 384-A (1962)Google Scholar
  48. Fenner, C. N.: The origin and mode of emplacement of the great tuff deposits in the Valley of the Ten Thousand Smokes. Techn. Pap. Nat. Geogr. Contr. 1, 74 (1923) (Quot. by Sparks, 1976)Google Scholar
  49. Ferris, A. P., Jepson, W. B.: The exchange capacities of kaolinite and the preparation of homoionic clays. J. Colloid Interface Sci. 51, 245–259 (1975)CrossRefGoogle Scholar
  50. Fiske, R. S., Hopson, C. A., Waters, A. C.: Geology of Mount Rainier National Park, Washington. U. S. Geol. Survey Prof. Paper, 444 (1963)Google Scholar
  51. Fleischer, P.: Mineralogy and sedimentation history of Santa Barbara Basin, California. J. Sediment Petrol. 42, 49–58 (1972)Google Scholar
  52. Flood, R. H.,Vernon, R. H., Shaw, S. E., Chappell, B. W.: Origin of pyroxene-plagioclase aggregates in rhyodacite, Contr. Miner. Petrol. 60, 299–309 (1977)CrossRefGoogle Scholar
  53. Frank-Kamenetskii, V. A., Kotov, N. V., Goilo, E. A., Tomashenko, A. N.: Polytypism and transformation of the minerals of kaolinite group under hydrothermal conditions. Clay Sci. 4, 199–204 (1974)Google Scholar
  54. Fujii, T.: Crystal settling in a sill. Lithos, 7, 133–137 (1974)CrossRefGoogle Scholar
  55. Ganor, E., Yaalon, D. H.: Dust in the environment. I. The composition of dust in Israel (abs.). Israel Ecol. Soc. 5th Cong., Tel. Aviv (1974)Google Scholar
  56. Garrett, W. D.: Stabilization of air bubbles at the air-sea interface by surface active material. Deep-Sea Res. 14, 661–672 (1967)Google Scholar
  57. Garrett, W. D.: Impact of natural and man-made surface films on the properties of the air-sea interface. In: The changing chemistry of the oceans. Stockholm: Almqvist and Wiksell, 1972, pp. 75–90Google Scholar
  58. Gidigasu, M. D.: Degree of weathering in the identification of latérite materials for engineering purpose-a review. Engineer. Geol. 8, 213–266 (1974)CrossRefGoogle Scholar
  59. Giese, R. F., Jr.: Interlayer bonding in kaolinite, dickite and nacrite. Clays Clay Miner. 21, 145–149 (1973)CrossRefGoogle Scholar
  60. Gillette, D. A., Blifford, I. H., Jr., Fenster, C. R.: Measurements of aerosol size distributions and vertical fluxes of aerosols on land subjected to wind erosion. J. Appl. Meteorol. 11, 977–988 (1972)CrossRefGoogle Scholar
  61. Graedel, T. E., Franey, J. P.: Field measurements of submicron aerosol washout by snow. Geophys. Res. Lett. 2, 325–328 (1975)CrossRefGoogle Scholar
  62. Green, D.: Composition of basaltic magmas as indicators of conditions of origin. Application to oceanic volcanism. R. Soc. London Phil. Trans., Ser. A 268, 707–725 (1971)CrossRefGoogle Scholar
  63. Grim, R. E.: Clay mineralogy, 2nd ed. New York: McGraw-Hill: 1968Google Scholar
  64. Gruner, P., Kleinert, H.: Die Dämmerungserscheinungen. In: Probleme der kosmischen Physik, Hamburg: Henry Grand, 1927, Vol. 10, pp. 1–113Google Scholar
  65. Harris, P. G., Middlemost, E. A. K.: The evolution of kimberlite. Lithos 3, 77–88 (1970)CrossRefGoogle Scholar
  66. Haughton, D. R., Roeder, P. L., Skinner, B. J.: Solubility of sulfur in mafic magmas. Econ. Geol. 69, 451–467 (1974)CrossRefGoogle Scholar
  67. Haworth, R. D.: The chemical nature of humic acid. Soil Sci. 111, 71–79 (1971)CrossRefGoogle Scholar
  68. Hayashi, H., Oinuma, K.: Si-O absorption band near 1000 cm-1 and OH absorption bands of chlorite. Am. Mineral. 52, 1206–1210 (1967)Google Scholar
  69. Heezen, B. C., Ewing, M.: Turbidity currents and submarine slumps and the 1919 Grand Banks earthquake. Am. J. Sci. 250, 849–873 (1952)CrossRefGoogle Scholar
  70. Heller-Kallai, L., Yariv, S., Gross, S.: Hydroxyl-stretching frequencies of serpentine minerals. Mineral. Mag. 40, 197–200 (1975)Google Scholar
  71. Herbillon, A. J., Mestdagh, M. M., Vielvoye, L., Derouane, E. G.: Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner. 11, 201–220 (1976)CrossRefGoogle Scholar
  72. Hirsbrunner, W. R., Wangersky, P. J.: Composition of the inorganic fraction of the particulate organic matter in seawater. Mar. Chem. 4, 43–49 (1976)CrossRefGoogle Scholar
  73. Hoffman, E. J., Duce, R. A.: The organic carbon content of marine aerosols collected on Bermuda. J. Geophys. Res. 79, 4474–4477 (1974)CrossRefGoogle Scholar
  74. Hoffmann, D. J., Rosen, J. M., Pepin, T. J., Pinnick, R. G.: Particles in the polar stratosphere. Nature (London) 245, 369–371 (1973)CrossRefGoogle Scholar
  75. Holloway, J. R.: Fluids in the evolution of granitic magmas. Consequences of finite CO2 solubility. Geol. Soc. Am. Bull. 87, 1513–1518 (1976)CrossRefGoogle Scholar
  76. Itamar, A.: Colloid systems in volcanic eruptions, (in Hebrew). Jerusalem: The Department of Geology, The Hebrew University 1975Google Scholar
  77. Jackson, I.: Melting of the silica isotypes SiO2, BeF2 and GeO2 at elevated pressures. Phys. Earth Planet. Inter. 13, 218–231 (1976)CrossRefGoogle Scholar
  78. Jacobs, M. B., Thorndike, E. M., Ewing, M.: A comparison of suspended particulate matter from nepheloid and clear water. Mar. Geol. 14, 117–128 (1973)CrossRefGoogle Scholar
  79. JANAF Thermochemical Tables. Washington, D. C.: NSRDS-NBS 37, 1971Google Scholar
  80. Johansson, T. B., van Grieken, R. E., Winchester, J. W.: Elemental abundance variation with particle size in North Florida aerosols. J. Geophys. Res. 81, 1039–1046 (1976)CrossRefGoogle Scholar
  81. Junge, C. E.: Vertical profiles of condensation nuclei in the stratosphere. J. Meteorol. 18, 501–509 (1961)CrossRefGoogle Scholar
  82. Junge, C. E.: Air chemistry and radioactivity. New York: Academic Press 1963Google Scholar
  83. Junge, C. E., Chagnon, C. W., Manson, J. E.: Stratospheric aerosols. J. Meteorol. 18, 81–107 (1961b)CrossRefGoogle Scholar
  84. Junge, C. E., Manson, J. E.: Stratospheric aerosol studies. J. Geophys. Res. 66, 2163–2182 (1961a)CrossRefGoogle Scholar
  85. Kadik, A. A., Lukanin, O. A.: The solubility-dependent behavior of water and carbon dioxide in magmatic processes. Geochem. Intern. (Eng. translation, published, January, 1974, pp. 115–129). Geokhimiya, No. 2, 163–179 (1973)Google Scholar
  86. Kalle, K.: The problem of Gelbstoff in the sea. Ocean. Mar. Bio. Ann. Rev. 4, 91–104 (1966)Google Scholar
  87. Kay, R., Hubbard, N., Gast, P.: Chemical characteristics and the origin of oceanic ridge volcanic rocks. J. Geophys. Res. 75, 1585–1613 (1970)CrossRefGoogle Scholar
  88. Khailov, K. M., Semenov, A. D., Burlakova, Z. P., Semonova, I. M.: Some information on chemical nature and properties of macro molecular organic substances dissolved in seawater and involved in bubble. Gidrokhim. Mater. 52, 82–91 (1969)Google Scholar
  89. Kononova, M. M.: Soil organic matter, its nature, its role in soil formation and in soil fertility. Oxford: Pergamon Press 1961Google Scholar
  90. Kukal, Z.: Geology of recent sediments. Prague: Acad. Pub. Czechoslovak Acad. Sci. 1971Google Scholar
  91. Lazrus, A. L., Gandrud, B. W.: Stratospheric sulfate aerosol. J. Geophys. Res. 79, 3424–3431 (1974)CrossRefGoogle Scholar
  92. Lisitzin, A. P.: Sedimentation in the world ocean. Soc. Econ. Paleontol. Mineral. Spec. Publ. No. 17, (1972)Google Scholar
  93. Loughnan, F. C.: Chemical weathering of the silicate minerals. New York: American Elsevier 1969Google Scholar
  94. Macdonald, G. A.: Volcanoes. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1972Google Scholar
  95. MacTaggart, K. C.: The mobility of nuées ardents. Am. J. Sci. 258, 369–382 (1960)CrossRefGoogle Scholar
  96. Martens, C. S., Wesolowski, J. J., Harris, R. C., Kaifer, R.: Chlorine loss from Puerto Rican and San Francisco Bay area marine aerosols. J. Geophys. Res. 78, 8778–8792 (1973b)CrossRefGoogle Scholar
  97. Martens, C. S., Wesołowski, J. J., Kaifer, R., John, W., Harris, R. C.: Sources of vanadium in Puerto Rican and San Francisco Bay area aerosols. Environ. Sci. Technol. 7, 817–820 (1973a)CrossRefGoogle Scholar
  98. Marty, J. C., Saliot, A.: Hydrocarbon (normal alkanes) in the surface microlayer of seawater. Deep-Sea Res. 23, 863–873 (1976)Google Scholar
  99. Mashali, A., Greenland, D. J.: Dependence of charge characteristics of kaolinites on pH and electrolyte concentration. Proc. Int. Clay Conf., Mexico. Bailey, S. W. (ed.) Wilnette, I. L.: Applied Publishing Ltd., 1975, pp. 240–241Google Scholar
  100. Mattson, S.: The constitution of the pedosphere. Ann. Agric. College Sweden 5, 261–263 (1938)Google Scholar
  101. Maurer, L. G.: Organic polymers in seawater: Changes with depth in the Gulf of Mexico. Deep-Sea Res. 23, 1059–1064 (1976)Google Scholar
  102. Meszaros, A., Vissy, K.: Concentration, size distribution and chemical nature of atmospheric aerosol particles in remote oceanic areas, Aerosol Sci. 5, 101–109 (1974)CrossRefGoogle Scholar
  103. Miller, M. S., Friedlander, S. K., Hidy, G. M.: A chemical element balance for the Pasadena aerosol. J. Colloid Interface Sci. 39, 165–176 (1972)CrossRefGoogle Scholar
  104. Murai, I.: A study of textural characteristics of pyroclastic flow deposits in Japan. Bull. Earth Res. Inst. Tokyo Univ. 39, 133–248 (1961)Google Scholar
  105. Naka, S., Ito, S., Kameyama, T., Inigaki, M.: Crystallization of coesite. Mem. Fac. Eng. Nagoya Univ. 28, 266–316 (1976)Google Scholar
  106. Natusch, D. F. S., Wallace, J. R.: Urban aerosol toxicity: the influence of particle size. Science 186, 695–699 (1974)CrossRefGoogle Scholar
  107. Nissenbaum, A., Kaplan, I. R.: Chemical and isotopic evidence for the in situ origin of marine substances. Limnol. Oceanogr. 17, 570–582 (1972)CrossRefGoogle Scholar
  108. Normark, W. R., Dickson, F. H.: Man-made turbidity currents in Lake Superior. Sedimentology, 23, 815–831 (1976)CrossRefGoogle Scholar
  109. Olivero, J. J.: Surface catalytic reactions on upper atmospheric aerosols, J. Geophys. Res. 79, 476–478 (1974)CrossRefGoogle Scholar
  110. Peterson, M. N.: Calcite rate of dissolution in a vertical profile in the central Pacific. Science 154, 3756 (1966)CrossRefGoogle Scholar
  111. Pytkowicz, R. M., Fowler, G. A.: Solubility of foraminifera in seawater at high pressures, Geochem. J. 7, 169–182 (1967)CrossRefGoogle Scholar
  112. Range, K. J., Range, A., Weiss, A.: Fire-clay type kaolinite? Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Conf., Tokyo, Heller, L. (ed.) Jerusalem: Israel Univ. Press, 1969, pp. 3–13Google Scholar
  113. Rankin, A. H., LeBas, M. J.: Liquid immiscibility between silicate and carbonate melts in naturally occurring ijolite magma. Nature (London) 250, 206–209 (1974)CrossRefGoogle Scholar
  114. Rao, C. P., Gluskoter, H. J.: Occurrence and distribution of minerals in Illinois coals. Ill. State Geol. Surv., Circular 476, (1973)Google Scholar
  115. Reynolds, D. L.: Fluidization as a geological process and its bearing on the problem of intrusive granites. Am. J. Sci. 252, 577–614 (1954)CrossRefGoogle Scholar
  116. Riley, J. F.. Chester, R.: Introduction to marine chemistry. London: Academic Press, 1971Google Scholar
  117. Roedder, E.: Metastability in fluid inclusions, Soc. Mining Geol., Japan, Spec. Issue 3, Proc. IMA-IAGOD, Meetings 1970, 1971 pp. 327–334Google Scholar
  118. Rosinski, J., Langer, G.: Extraneous particles shed from large soil particles. Aerosol Sci. 5, 373–378 (1974)CrossRefGoogle Scholar
  119. Ruberto, R. G., Cronauer, D. C., Jewell, D. M., Seshadri, K. S.: Structural aspects of sub-bituminous coal deduced from solvation studies. I. Anthracene-oil solvents. Fuel 56, 17–24 (1977)Google Scholar
  120. Ruch, R. R., Gluskoter, H. J., Shimp, N. F.: Occurrence and distribution of potentially volatile trace elements in coal (an interim report). Ill. State Geol. Surv., Environ. Geol., Notes, 61 (1973)Google Scholar
  121. Ryabchikov, I. D., Hamilton, D. L.: Possible separation of concentrated chloride solutions during crystallization of felsic magma. Doki. Akad. Nauk. SSSR, Earth Sci. Sec. 197, 219–220 (1971) (Americ. Geol. Inst. Trans.)Google Scholar
  122. Sacchi, R.: Fluidization phenomena in the Southern Alps basement. Boll. Soc. Geol. Ital. 90, 271–281 (1971)Google Scholar
  123. Scarfe, C. M.: Water solubility in basic magmas, Nature (London) Phys. Sci. 246, 9–10 (1973)Google Scholar
  124. Scargill, D.: Dissociation constants of anhydrous ammonium sulfite and ammonium pyrosulfate prepared by gas phase reactions. J. Chem. Soc. A, 2461–2466 (1971)Google Scholar
  125. Scherer, G., Vergano, P. J., Uhlman, D. R.: A study of quartz melting. Phys. Chem. Glasses 11, 53–58 (1970)Google Scholar
  126. Schmincke, H. U.: Volcanological aspects of peralkaline silicic welded ash-flow tuffs. Bull. Volcanol. 38, 594–636 (1974)CrossRefGoogle Scholar
  127. Schmincke, H. U., Fisher, R. V., Waters, A. C.: Antidune and chute and pool structures in Base Surge deposits from the Laacher See area (Germany). Sedimentology 20, 1–24 (1973)CrossRefGoogle Scholar
  128. Schneider, S. H.: Atmospheric particles and climate: Can we evaluate the impact of man’s activities? Quat. Res. (N. Y.) 2, 425–435 (1972)CrossRefGoogle Scholar
  129. Schnitzer, M., Kahn, S. U.: Humic substances in the environment. New York: Marcel Dekker, Inc. 1972Google Scholar
  130. Schofield, R. K., Samson, H. R.: The deflocculation of kaolinite suspensions and the accompanying change-over from positive to negative chloride adsorption. Clay Miner. Bull. 2, 45–51 (1953)CrossRefGoogle Scholar
  131. Serna, C. J., Velde, B. D., White, J. L.: Infrared evidence of order-disorder in amesites. Am. Mineral. 62, 296–303 (1977)Google Scholar
  132. Sharp, J. H.: Size classes of organic carbon in seawater, Limnol. Oceanogr. 18, 441–447 (1973)CrossRefGoogle Scholar
  133. Sheldon, R. W., Evelyn, T. P. T., Parsons, T. R.: On the occurrence and formation of small particles in seawater. Limnol. Oceanogr. 12, 367–375 (1967)CrossRefGoogle Scholar
  134. Sheridan, M. F.: Particle size characteristics of pyroclastic tuffs, J. Geophys. Res. 76, 5627–5634 (1971)CrossRefGoogle Scholar
  135. Sholkovitz, E., Soutar, A.: Changes in the composition of the bottom water of the Santa Barbara Basin: Effect of turbidity currents. Deep-Sea Res. 22, 13–21 (1975)Google Scholar
  136. Sieburth, J. M.: Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. Exp. Mar. Biol. Ecol. 3, 290–309 (1969)CrossRefGoogle Scholar
  137. Sieburth, J. M., Jensen, A.: Studies on algal substances in the sea, Part I., J. Exp. Mar. Biol. Ecol. 2, 174–189 (1968)CrossRefGoogle Scholar
  138. Sleep, N. H.: Segregation of magma from a mostly crystalline mush. Geol. Soc. Am. Bull. 85, 1225–1232 (1974)CrossRefGoogle Scholar
  139. Sood, M. K., Edgar, A. D.: Melting relations of undersaturated alkaline rocks from the ilimaussaq intrusion and Gronnedal-Ika Complex, South Greenland, under water vapor and controlled partial oxygen pressure. Medd. om Grønland 181, 12 (1970)Google Scholar
  140. Sparks, R. S. J.: Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23, 147–188 (1976)CrossRefGoogle Scholar
  141. Suess, E.: Interaction of organic compounds with calcium carbonate: Associated phenomena and geochemical implications. Geochim. Cosmochim. Acta 34, 157–158 (1970)CrossRefGoogle Scholar
  142. Sutcliffe, W. H., Baylar, E. R., Menzel, D. W.: Sea surface chemistry and Langmuir circulation. Deep-Sea Res. 10, 233–243 (1963)Google Scholar
  143. Swinnerton, J. W., Lamontagne, R. A.: Oceanic distribution of low-molecular-weight hydrocarbons baseline measurements. Environ. Sci. Technol. 8, 657–663 (1974)CrossRefGoogle Scholar
  144. Tan, Li-Ping: The metamorphism of Taiwan Miocene coals. Taiwan Geol. Surv. Bull. 16, 1–44 (1965)Google Scholar
  145. Terjesen, S. G., Erga, O., Thorsen, G., Ve, A.: Phase boundary processes as rate determining steps in reactions between solids and liquids. Chem. Eng. Sci. 74, 277–288 (1961)Google Scholar
  146. Toon, O. B., Pollack, J. B.: Physical properties of the stratospheric aerosols. J. Geophys. Res. 78, 7051–7056 (1973)CrossRefGoogle Scholar
  147. Turekian, K.K.: Some aspects of the geochemistry of marine sediments. In: Chemical oceanography. Riley, S. P., Skirrow, G. (eds.) New York: Academic Press 1965, pp. 81–126Google Scholar
  148. Urnes, S.: X-ray diffractions of glasses and methods of interpretation. In: Selected topics in high temperature chemistry. Oslo: Universitetsforlaget 1966, pp. 97–124Google Scholar
  149. van Olphen, H.: Introduction to clay colloid chemistry. New York: Interscience Publ. 1963Google Scholar
  150. Wada, S., Kokubu, N.: Chemical composition of maritime aerosols. Geochem. J. 6, 131–139 (1973)CrossRefGoogle Scholar
  151. Waff, H. S.: Pressure-induced coordination changes in magmatic liquids. Geophys. Res. Lett. 2, 193–196 (1975)CrossRefGoogle Scholar
  152. Wager, L. R., Brown, G. M., Wadsworth, W. J.: Types of igneous cumulates. J. Petrol. 1, 73–85 (1960)Google Scholar
  153. Walker, G. F.: Vermiculite minerals. In: The X-ray identification and structures of clay minerals. Brown, G. (ed.) Great Britain: Mineralogical Society, Monograph, 1961, Chap. VII, pp. 199–223.Google Scholar
  154. Walker, G. F.: Vermiculite minerals. In: The X-ray identification and structures of clay minerals. Brown, G. (ed.) Great Britain: Mineralogical Society, Monograph, 1961, Chap. VII, pp. 199–223.Google Scholar
  155. Walker, G. P. L.: Grain-size characteristics of pyroclastic deposits. J. Geol. 79, 696–714 (1971)CrossRefGoogle Scholar
  156. Weaver, C. E., Pollard, L. D.: The chemistry of clay minerals. Amsterdam: Elsevier 1973Google Scholar
  157. Wedepohl, K. H.: Geochemistry. Althous, E. (translator), New York: Holt, Rinehart and Winston, Inc. 1971Google Scholar
  158. Whitford-Stark, J. L.: Vesicles and related structures in lava. J. Geol. 8, 317–332 (1973)Google Scholar
  159. Wilson, S. A., Weber, J. H.: A comparative study of number-average dissociation-correlated molecular weights of fulvic acids isolated from water and soil. Chem. Geol. 19, 285–293 (1977)CrossRefGoogle Scholar
  160. Wyllie, P. J., Huang, W. L.: Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contribut. Mineral. Petrol. 54, 79–107 (1976)CrossRefGoogle Scholar
  161. Yaalon, D. H., Ganor, E.: The influence of dust on soils during the quaternary. Soil Sci. 116, 146–155 (1973)CrossRefGoogle Scholar
  162. Yariv, S., Shoval, S.: The nature of the interaction between water molecules and kaolin-like layers in hydrated halloysite. Clays Clay Miner. 23, 413–414 (1975)CrossRefGoogle Scholar
  163. Zavaritskii, A. N., Sobolev, V. S.: The physicochemical principles of igneous petrology. Kolodny, J., Amoils, R. (translators). Jerusalem: Israel Program for Scientific Translations 1964Google Scholar
  164. Zieminski, S. A., Hume III, R. M., Durham, R.: Rates of oxygen transfer from air bubbles to aqueous NaCl solutions at various temperatures. Mar. Chem. 4, 333–346 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Shmuel Yariv
    • 1
  • Harold Cross
    • 2
  1. 1.The Hebrew University of JerusalemIsrael
  2. 2.Israel Patent OfficeJerusalemIsrael

Personalised recommendations