Model of Nonlinear Viscoelastic Wall Rheology Applied to Arterial Dynamics

  • C. Oddou
  • P. Flaud
  • D. Geiger


In modern cardiovascular research, one of the fundamental problems is the accurate determination of local flow patterns inside large arteries and their relation with pressure waves generated by the heart. Data for blood flow rates, wall shear stresses, and detailed velocity profiles (with localization of inflexion points, recirculation zone, and boundary layer separation) are necessary to study transport phenomena related to atherogenesis or instability and turbulence generation mechanism. Theoretic and experimental models for local hemodynamic studies, as they have most often been designed in the past, do not take into account the motion of the wall and, for analytic and experimental simplification purposes, consider only the rigid wall case. Nevertheless, in regard to the large strain generated inside the arterial tissues, radial motion of the boundary and associated convective effects in the blood dynamics have to be considered if a rigorous description of the hemodynamic events is required.


Wall Shear Stress Pressure Wave Radial Motion Parameter Unsteadiness Pressure Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flaud, P., Geiger, D., Oddou, C., Quemada, D.: Dispositif experimental pour la modélisation de l’écoulement sanguin dans les artères. Rev. Phys. Appl. 10, 61–67 (1975)Google Scholar
  2. 2.
    Gow, B.S.: The influence of vascular smooth muscle on the viscoelastic properties of blood vessels. In: Cardiovascular Fluid Dynamics. Bergel, D.H. (ed.). New York: Acad. Pr. 65–110, 1972, Vol. IIGoogle Scholar
  3. 3.
    Ling, S.C., Atabek, H.B.: A nonlinear analysis of pulsatile flow in arteries. J. Fluid Mech., 55, 493 (1972)CrossRefGoogle Scholar
  4. 4.
    McDonald, D.A.: Blood Flow in Arteries. London-Edinburgh: Edward Arnold, 1974Google Scholar
  5. 5.
    Oddou, C., Flaud, P., Geiger, D.: Rheologie des parois et hydrodynamique artérielle. J. Physiol. (Paris) 72, 663–681 (1976)Google Scholar
  6. 6.
    Patel, D., Vaishnav, R.N.: The rheology of large blood vessels. In: Cardiovascular Fluid Dynamics. Bergel, D.H. (ed.). New York: Acad. Pr. 1972, Vol. II 1–64Google Scholar
  7. 7.
    Roach, M.R., Burton, A.C.: The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35, 681–690 (1957)PubMedCrossRefGoogle Scholar
  8. 8.
    Wetterer, E., Kenner, T.: Die Dynamik des Arterienpulses; Heidelberg-Berlin-New York: Springer 1968Google Scholar
  9. 9.
    Wolinsky, H., Glagov, S.: Structural basis for the basic mechanical properties of the aortic media. Circ. Res., 14, 400–413 (1964)PubMedGoogle Scholar
  10. 10.
    Womersley, J.R.: An elastic tube theory of pulse transmission and oscillatory flow in mammalian artery. Wright Air Dev. Ctr. Tech. Rep WADC TR 56–614 (1957)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • C. Oddou
    • 1
  • P. Flaud
    • 1
  • D. Geiger
    • 1
  1. 1.L. B. H. P.-Université Paris 7Paris Cedex 05Prance

Personalised recommendations