Photodynamic Modification of Erythrocyte Membrane Proteins Induced by Protoporphyrin

  • T. M. A. R. Dubbelman
  • A. F. P. M. de Goeij
  • J. v. Steveninck
Conference paper


Protoporphyrin is accumulated in the erythrocytes of patients with erythropoietic protoporphyria (EPP) as the result of decreased hemesynthetase activity after disappearance of the nucleus from the erythroid cell (3). Irradiation of the erythrocytes with visible light causes an increase in cation permeability, ultimately resulting in hemolysis. Photohemolysis can also be evoked by irradiating normal erythrocytes in the presence of protoporphyrin (11). Illumination under nitrogen does not cause hemolysis. It is apparently a photooxidative process. B-carotene protects against hemolysis (11) and with several patients, against skin damage (1). Photosensitized peroxidation of unsaturated fatty acids and cholesterol is not the primary cause of membrane damage (4). Analysis of membrane proteins by sodiumdodecylsulphate-polyacrylamide-gel electrophoresis showed extensive cross-linking of the proteins (5). Since the formation of these crosslinks seemed to be of crucial importance in understanding the photochemical damage, they are studied in more detail, together with some functional aspects of the proteins involved.


Erythrocyte Membrane Void Volume Fraction Photodynamic Effect Cation Permeability Normal Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baart de la Faille, H., Suurmond, D., Went, L.N., Van Steveninck, J., Sehothorst, A. A.: ß-Carotene as a treatment for photohypersensitivity due to erythropoietic protoporphyria. Dermatologica 145, 389–394 (1972)PubMedCrossRefGoogle Scholar
  2. 2.
    Carraway, K.L., Shin, B.C.: Specific modification, isolation and partial characterization of an erythrocyte membrane protein. J. Biol. Chem. 247, 2102–2108 (1972)PubMedGoogle Scholar
  3. 3.
    De Goeij, A.F.P.M., Christianse, K., Van Steveninck, J.: Decreased haem synthetase activity in blood cells of patients with erythropoietic protoporphyria. Eur. J. Clin. Invest. 5, 397–400 (1975)PubMedGoogle Scholar
  4. 4.
    De Goeij, A.F.P.M., Van Steveninck, J.: Photodynamic effects of protoporphyrin on cholesterol and unsaturated fatty acids in erythrocyte membranes in protoporphyria and in normal red blood cells. Clin. Chim. Acta 68, 115–122 (1976)PubMedCrossRefGoogle Scholar
  5. 5.
    De Goeij, A.F.P.M., Van Straalen, R.J.C., Van Steveninck, J.: Photodynamic modification of proteins in human red blood cell membranes, induced by protoporphyrin. Clin. Chim. Acta 71, 485–494 (1976)PubMedCrossRefGoogle Scholar
  6. 6.
    De Goeij, A.F.P.M., Ververgaert, P.H.J.T., Van Steveninck, J.: Photodynamic effects of protoporphyrin on the architecture of erythrocyte membranes in protoporphyria and in normal blood cells. Clin. Chim. Acta 62, 287–292 (1975)PubMedCrossRefGoogle Scholar
  7. 7.
    Dubbelman, T.M.A.R., De Bruijne, A.W., Van Steveninck, J.: Photodynamic effects of protoporphyrin on red blood cell deformability. Biochem. Biophys. Res. Commun. 77, 811–817(1977)PubMedCrossRefGoogle Scholar
  8. 8.
    Kirkpatrick, F.H.: Spectrin: current understanding of its physical, biochemical and functional aspects. Life Sci. 19, 1–18 (1976)PubMedCrossRefGoogle Scholar
  9. 9.
    Kirkpatrick, F.H., Woods, G.M., LaCelle, P.L., Weed, R.I.: Calcium and magnesium ATPases of the spectrin fraction of human erythrocytes. J. Supramolec. Structure 3, 415–425 (1975)CrossRefGoogle Scholar
  10. 10.
    Pinto da Silva, P., Nicolson, G.L.: Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes. Biochim. Biophys. Acta 363, 311–319 (1974)CrossRefGoogle Scholar
  11. 11.
    Sehothorst, A.A., Van Steveninck, J., Went, L.N.: Protoporphyrin induced photohemolysis in protoporphyria and in normal red blood cells. Clin. Chim. Acta 28, 41–49 (1970)CrossRefGoogle Scholar
  12. 12.
    Shin, B.C., Carraway, K.L.: Association of glyceraldehyde-3-phosphate dehydrogenase with the human erythrocyte membrane. J. Biol. Chem. 248, 1436–1444 (1973)PubMedGoogle Scholar
  13. 13.
    Wu, R., Racker, E.: Regulatory mechanisms in carbohydrate metabolism. J. Biol. Chem. 234, 1029–1035 (1959)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • T. M. A. R. Dubbelman
  • A. F. P. M. de Goeij
  • J. v. Steveninck
    • 1
  1. 1.Sylvius LaboratoriesLaboratory for Medical ChemistryLeidenThe Netherlands

Personalised recommendations