Skip to main content

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 6 / 6 A))

Abstract

Visual perception is initiated by the eye’s optics in the sense that the neural aspects of the visual process can only operate on the information that is presented to the nervous system. The varied ways in which this information is presented in the eyes of vertebrates and invertebrates raise questions about the consequences of the function of optical structures for vision. The purpose of this chapter is to review the effects of optical filtering on eye function emphasizing such unresolved issues, for example, as the function of optical filtering in the eyes of animals with high (suprahuman) visual acuity. Aspects of optical filtering will be reviewed commencing with the physical basis of transparency of the ocular media. The effects of interference and absorption filters will be examined. Polarization filters, which are covered by Waterman (this volume, Part B), and visual pigments, which have been recently reviewed by several authors in the Handbook of Sensory Physiology Vol. VII/I and Hamdorf (this volume), will be omitted. Filtering that results from the spatial arrangements and the physical properties of the photoreceptor cells will also be discussed. The unifying nature of this topic lends itself to a consideration of these factors independent of phylogenetic classification, and for this reason examples will be drawn freely from both the vertebrates and invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arey, L.B.: A retinal mechanism of efficient vision. J. comp. Neurol. 30, 343–349 (1919).

    Google Scholar 

  • Autrum, H., Zwehl, V.von: Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol. 48, 357–384 (1964).

    Google Scholar 

  • Baccetti, B., Bedini, C.: Research on the structure and physiology of the eyes of a lycosid spider. Arch. ital. Biol. 102, 97–122(1964).

    Google Scholar 

  • Bäck, I., Donner, K. O., Reuter, T.: The screening effect of the pigment epithelium on the retinal rods in the frog. Vision Res. 5, 101–111 (1965).

    PubMed  Google Scholar 

  • Barber, V. C., Evans, E. M., Land, M. F.: The fine structure of the eye of the mollusc Pecten maximus. Z. Zeilforsch. 76, 295–312 (1967).

    Google Scholar 

  • Barlow, H. B.: Optic nerve impulses and Weber’s law. In: Cold Spring Harbor symposia on quantitative biology, Vol. XXX, Sensory receptors. New York: Cold Spring Harbor, L.I. 1965.

    Google Scholar 

  • Baylor, D. A., Fettiplace, R.: Light path and photon capture in turtle photoreceptors. J. Physiol. (Lond.) 248, 433–464 (1975).

    CAS  Google Scholar 

  • Baylor, D. A., Hodgkin, A. L.: Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. (Lond.) 234, 163–198 (1973).

    CAS  Google Scholar 

  • Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Organization of visual axes in the compound eye of the fly Musca domestica L. and behavioural consequences. J. comp. Physiol. 102, 305–320 (1975).

    Google Scholar 

  • Beersma, D.G.M.: Spatial sensitivity and adaptation in fly visual sense cells. Poster Session No 17, Visual Sensitivity and Adaptation Meeting, The University of Surrey, Guildford, England (1978).

    Google Scholar 

  • Behrens, M., Krebs, W.: The effect of light-dark adaptation on the ultrastructure of Limulus lateral eye retinular cells. J. comp. Physiol. 107, 77–96 (1976).

    Google Scholar 

  • Benedek, G.B.: Theory of transparency of the eye. Appl. Opt. 10, 459–473 (1971).

    CAS  Google Scholar 

  • Benolken, R.M.: Photopigments of the lateral eye of Limulus. J. comp. Physiol. 107, 339–347 (1976).

    Google Scholar 

  • Berger, S.B.: Computations for Twersky’s theory of corneal transparency based on Hart-Farrell’s swelling pressure. J. Opt. Soc. Amer. 66, 864–865 (1976).

    CAS  Google Scholar 

  • Berkley, M. A., Watkins, D. W.: Visual acuity of the cat estimated from evoked cerebral potentials. Nature (Lond.) New Biol. 234, 91–92 (1971).

    CAS  Google Scholar 

  • Bernard, G.D.: Evidence for visual function of corneal interference filters. J. Insect Physiol. 17, 2287–2300(1971).

    PubMed  CAS  Google Scholar 

  • Bernard, G.D.: Spectral sensitivity of the dark-adapted butterfly pupil. ARVO abstract, Sarasota meeting (1976).

    Google Scholar 

  • Bernard, G.D., Miller, W.H.: Interference filters in the corneas of diptera. Invest. Ophthal. 7, 416–434 (1968).

    PubMed  CAS  Google Scholar 

  • Bernard, G.D., Miller, W.H.: What does antenna engineering have to do with insect eyes? IEEE Student J. 8, 2–8(1970).

    Google Scholar 

  • Bernhard, C. G., Gemne, G., Sällström, J.: Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z. vergl. Physiol. 67, 1–25 (1970).

    Google Scholar 

  • Bernhard, C.G., Miller, W. H., Møller, A.R.: The insect corneal nipple array. Acta physiol. scand. 63, Suppl. 243, 1–79 (1965).

    Google Scholar 

  • Bernhard, C. G., Ottoson, D.: Comparative studies on dark adaptation in the compound eyes of nocturnal and diurnal lepidoptera. J. Gen. Physiol. 44, 195–203 (1960 a).

    PubMed  CAS  Google Scholar 

  • Bernhard, C. G., Ottoson, D.: Studies on the relation between the pigment migration and the sensitivity changes during dark adaptation in diurnal and nocturnal lepidoptera. J. Gen. Physiol. 44, 205–215 (1960b).

    PubMed  CAS  Google Scholar 

  • Bernhard, C. G., Ottoson, D.: Quantitative studies on pigment migration and light sensitivity in the compound eyes at different light intensities. J. Gen. Physiol. 47, 465–478 (1964).

    PubMed  CAS  Google Scholar 

  • Blest, A.D., Land, M.F.: The physiological optics of Dinopis subrufus L.Koch: a fish-lens in a spider. Proc. roy. Soc. B 196, 197–222 (1977).

    CAS  Google Scholar 

  • Boettner, E.A., Wolter, J.R.: Transmission of the ocular media. Invest. Ophthal. 1, 776–783 (1962).

    Google Scholar 

  • Born, M., Wolf, E.: Principles of optics. New York: Pergamon Press 1965.

    Google Scholar 

  • Bowmaker, J.K.: The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Res. 17, 1129–1138(1977).

    PubMed  CAS  Google Scholar 

  • Bowmaker, J.K., Knowles, A.: The visual pigments and oil droplets of the chicken retina. Vision Res. 17, 755–764 (1977).

    PubMed  CAS  Google Scholar 

  • Bowmaker, J.K., Martin, G.R.: Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl). Vision Res. 18, 1125–1130 (1978).

    PubMed  CAS  Google Scholar 

  • Bowness, J.M., Morton, R.A.: Distribution of copper and zinc in the eyes of fresh-water fishes and frogs. Occurence of metals in melanin fractions from eye tissues. Biochem. J. 51, 530–535 (1952).

    PubMed  CAS  Google Scholar 

  • Brekhovskikh, L.M.: Waves in Layered Media. New York-London: Academic Press, 1960.

    Google Scholar 

  • Brown, P. K., Wald, G.: Visual pigments in human and monkey retinas. Nature (Lond.) 200, 37–43 (1963).

    CAS  Google Scholar 

  • Bugnion, E., Popoff, N.: Les yeux des insectes nocturnes. Arch. Anat. Micr. Morph. Exp. 16, 18–304 (1914).

    Google Scholar 

  • Burnside, M. B.: Possible roles of microtubules and actin filaments in retinal pigmented epithelium. Exp. Eye Res. 23, 257–275 (1976).

    PubMed  CAS  Google Scholar 

  • Butler, L., Roppel, R., Zeigler, J.: Post-emergence maturation of the eye of the adult Black Carpet Beetle Attagenus megatoma (Fab.)—an EM study. J. Morph. 130, 103–127 (1970).

    Google Scholar 

  • Butler, R.: The identification and mapping of spectral cell types in the retina of Periplaneta americana. Z. vergl. Physiol. 72, 67–80 (1971).

    Google Scholar 

  • Butler, R., Horridge, G.A.: The electrophysiology of the retina of Periplaneta americana. J. comp. Physiol. 83, 263–278 (1973).

    Google Scholar 

  • Byram, G. M.: Physical and photochemical basis of visual resolving power. J. Opt. Soc. Amer. 34, 718–738(1944).

    Google Scholar 

  • Campbell, F. W., Green, D.G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 181, 576–593 (1965).

    CAS  Google Scholar 

  • Campbell, F. W., Gregory, A. H.: Effect of size of pupil on visual acuity. Nature (Lond.) 187, 1120–1122(1960).

    Google Scholar 

  • Campbell, F.W., Gubisch, R.W.: Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966).

    CAS  Google Scholar 

  • Carlström, D.: The structure of chitin. In: Bernhard, CG. (Ed.): The functional organization of the compound eye. Oxford-New York: Pergamon Press 1966.

    Google Scholar 

  • Carricaburu, P., Chardenot, P.: Spectres d’absorption de la cornée de quelques arthropodes. Vision Res. 7, 43–50(1967).

    PubMed  CAS  Google Scholar 

  • Chamberlain, S. C., Barlow, R.B.: Morphological correlates of efferent circadian activity and light adaptation in the Limulus lateral eye. Biol. Bull. 153, 418–419 (1977).

    Google Scholar 

  • Cohen, A.I.: An ultrastructure analysis of the photoreceptors of the squid and their synaptic connections I. J. comp. Neurol. 147, 351–378 (1973).

    PubMed  CAS  Google Scholar 

  • Coles, J. A.: Some reflective properties of the tapetum lucidum of the cat’s eye. J. Physiol. (Lond.) 212, 393–409 (1971).

    CAS  Google Scholar 

  • Daecke, E.: On the eye-coloration of the Genus Chrysops. Entomol. News 17, 39–42 (1906).

    Google Scholar 

  • Dartnall, H. J. A.: The visual pigment of the green rods. Vision Res. 7, 1–16 (1967).

    PubMed  CAS  Google Scholar 

  • Dartnall, H.J.A., Arden, G.B., Ikeda, H., Luck, C.P., Rosenberg, M.E., Pedler, C.M.H., Tansley, K.: Anatomical, electrophysiological and pigmentary aspects of vision in the bush baby: an interpretative study. Vision Res. 5, 399–424 (1965).

    PubMed  CAS  Google Scholar 

  • Daw, N.W., Pearlman, A.L.: Pigment migration and adaptation in the eye of the Squid, Loligo pealei. J. Gen. Physiol. 63, 22–36 (1974).

    PubMed  CAS  Google Scholar 

  • DeBruin, G.H.P., Crisp, D. J.: The influence of pigment migration on vision of higher Crustacea. J.Exp. Biol. 34, 447–464 (1957).

    Google Scholar 

  • Demoll, R.: Über eine lichtzersetzliche Substanz im Facettenauge, sowie über eine Pigmentwanderung im Appositionsauge. Pflügers Arch. Physiol. 129, 461–475 (1909).

    Google Scholar 

  • Denton, E. J.: The responses of the pupil of gekko to external light stimulus. J. Gen. Physiol. 40, 201–218 (1956).

    PubMed  CAS  Google Scholar 

  • Denton, E.J., Land, M.F.: Optical properties of the lamellae causing interference colours in animal reflectors. J. Physiol. (Lond.) 191, 23–24 (1967).

    Google Scholar 

  • Denton, E. J., Nicol, J.A.C: The choroidal tapeta of some cartilaginous fishes (Chondrichthyes). J. mar. biol. Ass. U.K. 44, 219–258 (1964).

    Google Scholar 

  • Denton, E. J., Wyllie, J.H.: Study of the photosensitive pigments in the pink and green rods of the frog. J. Physiol. (Lond.) 127, 81–89 (1955).

    CAS  Google Scholar 

  • Dodt, E., Jessen, K.H.: Das adaptive Verhalten der Froschnetzhaut, untersucht mit der Methode der konstanten elektrischen Antwort. Vision Res. 1, 228–243 (1961).

    Google Scholar 

  • Donner, K.O.: The visual acuity of some passerine birds. Acta Zool. Fenn. 66, 3–40 (1951).

    Google Scholar 

  • Døving, K.B., Miller, W.H.: Function of insect compound eyes containing crystalline tracts. J. Gen. Physiol. 54, 250–267 (1969).

    PubMed  Google Scholar 

  • Eguchi, E.: Rhabdom structure and receptor potentials in single crayfish retinular cells. J. cell. comp. Physiol. 66, 411–430 (1965).

    CAS  Google Scholar 

  • Eguchi, E., Waterman, T.H.: Fine structure patterns in crustacean rhabdoms. In: Bernhard, C.G. (Ed.): The functional organization of the compound eye. Oxford-New York: Pergamon Press, 1966.

    Google Scholar 

  • Engström, K.: Cone types and cone arrangements in teleost retinae. Acta Zool. 44, 179–243 (1963).

    Google Scholar 

  • Enoch, J.M.: Nature of the transmission of energy in the retinal receptors. J. Opt. Soc. Amer. 51, 1122–1126(1961).

    CAS  Google Scholar 

  • Enoch, J.M.: Vertebrate rod receptors are directionally sensitive. In: A.W. Snyder, Menzel, R., (Eds.): Photoreceptor optics. Berlin-Heidelberg-New York: Springer, 1975.

    Google Scholar 

  • Enoch, J.M., Tobey, F.L. Jr.: Use of the waveguide parameter v to determine the difference in the index of refraction between the rat rod outer segment and the interstitial matrix. J. Opt. Soc. Am. 68, 1130–1134(1978).

    PubMed  CAS  Google Scholar 

  • Epstein, P.S.: Reflection of waves in an inhomogeneous absorbing medium. Proc. nat. Acad. Sci. (Wash.) 16, 627–637 (1930).

    CAS  Google Scholar 

  • Exner, S.: Die Physiologie der Facettirten Augen von Krebsen und Insecten. Leipzig-Wien: Franz Deuticke, 1891

    Google Scholar 

  • Fahrenbach, W. H.: The fine structure of a nauplius eye. Z. Zeilforsch. 62, 182–197 (1964).

    CAS  Google Scholar 

  • Farrell, R. A., McCally, R.L.: On corneal transparency and its loss with swelling. J. Opt. Soc. Amer. 66, 342–345 (1975).

    Google Scholar 

  • Farrell, R. A., McCally, R.L., Tatham, P. E. R.: Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications. J. Physiol. (Lond.) 233, 589–612 (1973).

    CAS  Google Scholar 

  • Fischer, A.: Laboruntersuchungen und Freilandbeobachtungen zum Sehvermögen und Verhalten von Altweltgeiern. Zool. Jb. Syst. 96, 81–132 (1969).

    Google Scholar 

  • Fischer, A., Horstmann,G.: Der Feinbau des Auges der Mehlmotte, Ephestia kuehniella Zeller (Lepidoptera, Pyralididae). Z. Zellforsch. 116, 275–304 (1971).

    PubMed  CAS  Google Scholar 

  • Fite, K. V., Rosenfield-Wessels, S.: A comparative study of deep avian foveas. Brain Behav. Evol. 12, 97–115(1975).

    PubMed  CAS  Google Scholar 

  • Fox, R., Lehmkuhle, S.W., Westendorf, D. H.: Falcon visual acuity. Science 192, 263–265 (1976).

    PubMed  CAS  Google Scholar 

  • Fraenkel, G., Rudall, K.M.: The structure of insect cuticles. Proc. roy. Soc. B 134, 111–143 (1947).

    CAS  Google Scholar 

  • Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Snyder, A.W., Menzel, R. (Eds.): Photoreceptor Optics, pp.98–125. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Étude optique in vivo des éléments photorecepteurs dans l’oeil composé de Drosophila. Kybernetik 8, 1–13 (1971).

    PubMed  CAS  Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Le contrôle automatique du flux lumineux dans l’oeil composé des Diptères. Biol. Cybern. 21, 181–203 (1976).

    Google Scholar 

  • Freeman, I.L., Stevens, F.S., Jackson, D.S.: Isolation and amino acid composition of bovine corneal polymeric collagens. Biochem. biophys. Acta 154, 252–254 (1968).

    PubMed  CAS  Google Scholar 

  • Friza, F.: Zur Frage der Färbung und Zeichnung des Facettierten Insektenauges. Z. vergl. Physiol. 8, 290–336 (1928).

    Google Scholar 

  • Garten, S.: Die Veränderungen der Netzhaut durch Licht. Von Graefe-Saemisch, Handb. Augenheilk., Bd. 3, S. 1–250.1907.

    Google Scholar 

  • Geeraets, W. J., Williams, R.C., Chan, G., Ham Jr., W. T., GuerryIII, D., Schmidt, F. H.: The loss of light energy in retina and choroid. Arch. Ophthal. 64, 606–615 (1960).

    PubMed  CAS  Google Scholar 

  • Gemne, G.: Ontogenesis of corneal surface ultrastructure in nocturnal Lepidoptera. Phil. Trans. B 262, 343–363(1971).

    Google Scholar 

  • Glickstein, M., Millodot, M.: Retinoscopy and eye size. Science 168, 605–606 (1970).

    PubMed  CAS  Google Scholar 

  • Goetz, K. G.: Behavioral analysis of the visual system of the fruitfly Drosophila. In: Proceedings of the symposium on information processing in light sensory systems. Pasadena: California Institute of Technology 1965.

    Google Scholar 

  • Goldman, J.N., Benedek, G.B.: The relationship between morphology and transparency in the non-swelling corneal stroma of the shark. Invest. Ophthal. 6, 574–600 (1967).

    PubMed  CAS  Google Scholar 

  • Goldman, J. N., Benedek, G.B., Dohlman, C.H., Kravitt, B.: Structural alterations affecting transparency in swollen human corneas. Invest. Ophthal. 7, 501–519 (1968).

    PubMed  CAS  Google Scholar 

  • Goldsmith, T. H.: Do flies have a red receptor? J. Gen. Physiol. 49, 265–287 (1965).

    PubMed  CAS  Google Scholar 

  • Goldsmith, T.H.: The natural history of invertebrate visual pigments. In: Dartnall, H. J. (Ed.): Handbook of sensory physiology, Vol. VII/I, pp. 685–719. Berlin-Heidelberg-New York: Springer, 1972.

    Google Scholar 

  • Goldsmith, T.H., Bernard, G.D.: The visual system of insects. In: Rockstein, M. (Ed.): Physiology of Insects, p. 165–272, 2nd Ed., Vol. II, pp. 165–272. New York-London: Academic Press 1974.

    Google Scholar 

  • Goldsmith, T.H., Fernandez, H. R.: The sensitivity of housefly photoreceptors in the mid-ultraviolet and the limits of the visible spectrum. J. exp. Biol. 49, 669–677 (1968).

    PubMed  CAS  Google Scholar 

  • Govardovskii, V.J., Zueva, L.V.: Visual pigments of chicken and pigeon. Vision Res. 17, 537–543 (1977).

    PubMed  CAS  Google Scholar 

  • Gubisch, R.W.: Optical performance of the human eye. J. Opt. Soc. Amer. 57, 407–415 (1967).

    Google Scholar 

  • Hackman, R.H., Goldberg, M.: Studies on the hardening and darkening of insect cuticles. J. Insect Physiol. 17, 335–347 (1971). Hamdorf, K.: This volume

    CAS  Google Scholar 

  • Hart, R.W., Farrell, R.A.: Light scattering in the cornea. J. Opt. Soc. Amer. 59, 766–774 (1969).

    CAS  Google Scholar 

  • Hartline, H. K.: The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye. J. cell. comp. Physiol. 11, 465–478 (1938).

    Google Scholar 

  • Hartridge, H.: Recent Advances in the Physiology of Vision. Philadelphia: Blakiston Company 1950.

    Google Scholar 

  • Hassenstein, B.: Studi sulla Lysmata seticaudata Risso. VII. Pubbl. Staz. Zool. Napoli 25, 1–8 (1954).

    Google Scholar 

  • Hecht, S., Shlaer, S., Pirenne, M. H.: Energy, quanta, and vision. J. Gen. Physiol. 25, 819–840 (1942).

    PubMed  CAS  Google Scholar 

  • Helmholtz, H.: Helmholtz’s treatise on physiological optics (1911). (Translated from the Third German Edition, Vol. II). New York: Dover Publications, Inc. 1962.

    Google Scholar 

  • Höglund, G.: Pigment migration, light screening and receptor sensitivity in the compound eye of nocturnal lepidoptera. Acta physiol. scand. 69, Suppl. 282, 1–56 (1966).

    Google Scholar 

  • Höglund, G., Struwe, G.: Pigment migration and illumination of single photoreceptors in a moth. Z. vergl. Physiologie 74, 336–339 (1971).

    Google Scholar 

  • Höglund, G., Langer, J., Struwe, G., Thorell, B.: Spectral absorption by screening pigment granules in the compound eyes of a moth and a wasp. Z. vergl. Physiol. 67, 238–242 (1970).

    Google Scholar 

  • Horridge, G. A.: The retina of the locust. In: Bernhard, C. G. (Ed.): The Functional Organization of the Compound Eye, pp. 513–541. Oxford-New York: Pergamon Press 1966.

    Google Scholar 

  • Horridge, G. A.: Optical mechanisms of clear-zone eyes. In: Horridge, G. A. (Ed.): The Compound Eye and Vision of Insects, pp. 255–298. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Horridge, G. A.: The compound eye of insects. Sci. Amer. 237, 108–120 (1977).

    Google Scholar 

  • Horridge, G.A., Giddings, C.: Movement on dark-light adaptation in beetle eyes of the neuropteran type. Proc. Roy. Soc. B 179, 73–85 (1971).

    Google Scholar 

  • Horridge, G.A., Henderson, I.: The ommatidium of the lacewing Chrysopa (Neuroptera). Proc. Roy. Soc. Lond. B 192, 259–271 (1976).

    CAS  Google Scholar 

  • Horridge, G.A., Giddings, C., Stange, G.: The superposition eye of skipper butterflies. Proc. Roy. Soc. B 182, 457–495(1972).

    Google Scholar 

  • Horridge, G.A., Meinertzhagen, I. A.: The accuracy of the patterns of connexions of the first- and second-order neurons of the visual system of Calliphora. Proc. Roy. Soc. B 175, 69–82 (1970).

    CAS  Google Scholar 

  • Jacobson, S. G., Franklin, K. B. J., McDonald, W. I.: Visual acuity of the cat. Vision Res. 16, 1141–1143 (1976).

    PubMed  CAS  Google Scholar 

  • Keesey, U. T.: Effects of involuntary eye movements on visual acuity. J. Opt. Soc. Amer. 50, 769–774 (1960).

    CAS  Google Scholar 

  • Kerker, M.: The scattering of light and other electromagnetic radiation. New York-London: Academic Press 1969.

    Google Scholar 

  • Kinsey, V.E.: Spectral transmission of the eye to ultraviolet radiations. Arch. Ophthal. 39, 508–513 (1948).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K.: Discrete and graded receptor potentials in the compound eye of the fly (Musca). In: Bernhard, C.G. (Ed.): The functional Organization of the Compound Eye, Vol. 7, pp. 291–307. New York: Pergamon Press 1966.

    Google Scholar 

  • Kirschfeld, K.: Absorption properties of photopigments in single rods, cones and rhabdomeres. In: Processing of Optical Data by Organisms and by Machines. New York and London: Academic Press 1969.

    Google Scholar 

  • Kirschfeld, K.: Das neurale Superpositionsauge. Fortschr. Zool. 21, 230–257 (1973).

    Google Scholar 

  • Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturforsch. 29c, 592–596 (1974).

    CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–22 (1969).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Photostable pigments within the membrane of photoreceptors and their possible role. Biophys. Struct. Mech. 3, 191–194 (1977).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Snyder, A. W.: Measurement of a photoreceptor’s characteristic waveguide parameter. Vision Res. 16, 775–778 (1976).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, N., Minke, B.: Evidence for a sensitising pigment in fly photoreceptors. Nature (Lond.) 269, 386–390 (1977).

    CAS  Google Scholar 

  • Kirschfeld, K., Feiler, R., Franceschini, N.: A photostable pigment within the rhabdomere of fly photoreceptors no. 7. J. comp. Physiol. 125, 275–284 (1978).

    CAS  Google Scholar 

  • Kolb, G.: The structure of the eye of Pieris brassicae L. (Lepidoptera). Zoomorphologie 87, 123–146 (1977).

    Google Scholar 

  • Kolb, G., Autrum, H.: Die Feinstruktur im Auge der Biene bei Hell- und Dunkeladaptation. J. comp. Physiol. 77, 113–125(1972).

    Google Scholar 

  • Kolb, G., Autrum, H.: Selektive Adaptation und Pigmentwanderung in den Sehzellen des Bienenauges. J. comp. Physiol. 94, 1–6 (1974).

    Google Scholar 

  • Kolb, G., Autrum, H., Eguchi, E.: Die spektrale Transmission des dioptrischen Apparates von Aeschna cyanea Müll. Z. vergl. Physiol. 63, 434–439 (1969).

    Google Scholar 

  • Kreithen, M.L., Eisner, T.: Ultraviolet light detection by the homing pigeon. Nature 272, 347–348 (1978).

    PubMed  CAS  Google Scholar 

  • Land, M.F.: Image formation by a concave reflector in the eye of the scallop, Pecten maximus. J. Physiol. (Lond.) 179, 138–153 (1965).

    CAS  Google Scholar 

  • Land, M.F.: A multilayer interference reflector in the eye of the scallop, Pecten maximus. J. exp. Biol. 45, 433–447 (1966).

    Google Scholar 

  • Land, M. F.: Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation of visual optics. J. exp. Biol. 51, 443–470 (1969).

    PubMed  CAS  Google Scholar 

  • Land, M. F.: The physics and biology of animal reflectors. Progr. Biophys. 24, 77–105 (1972).

    Google Scholar 

  • Land, M.F.: Superposition images are formed by reflection in the eyes of some oceanic decapods Crustacea. Nature (Lond.) 263, 764–765 (1976).

    CAS  Google Scholar 

  • Langer, H.: Properties and functions of screening pigments in insect eyes. In: Snyder, A. W., Menzel, R. (Eds.): Photoreceptor Optics, pp. 429–455. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Leydig, F.: Das Auge der Gliederthiere. Tübingen: Verlag der H.Laupp’schen Buchhandlung 1864.

    Google Scholar 

  • Liebman, P. A.: Microspectrophotometry of photoreceptors. In: Dartnall, H.J.A. (Ed.): Handbook of sensory Physiology, Vol. VII/1, pp. 481–528. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Liebman, P. A., Entine, G.: Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 8, 761–775 (1968).

    PubMed  CAS  Google Scholar 

  • Liebman, P. A., Carroll, S., Laties, A.: Spectral sensitivity of retinal screening pigment migration in the frog. Vision Res. 9, 377–384 (1969).

    PubMed  CAS  Google Scholar 

  • Locke, M.: The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J. Morph. 118, 461–494 (1966).

    PubMed  CAS  Google Scholar 

  • Locket, N.A.: The retina of Poromitra nigrofulvus (Garman)—an optical and electron microscope study. Exp. Eye Res. 8, 265–275 (1969).

    PubMed  CAS  Google Scholar 

  • Locket, N. A.: Adaptations to the deep-sea environment. In: Crescitelli, F. (Ed.): Handbook of Sensory Physiology VII/5, pp. 67–192. Berlin-Heidelberg-New York: Springer 1977.

    Google Scholar 

  • Loew, E.R., Lythgoe, J.N.: The ecology of cone pigments in teleost fishes. Vision Res. 18, 715–722 (1978).

    PubMed  CAS  Google Scholar 

  • Ludvigh, E., McCarthy, E.F.: Absorption of visible light by the refractive media of the human eye. Arch. Ophthal. 20, 37–51 (1938).

    Google Scholar 

  • Lythgoe, J.N.: Iridescent corneas in fishes. Nature (Lond.) 233, 205–207 (1971).

    CAS  Google Scholar 

  • Lythgoe, J.N.: The adaptation of visual pigments to the photic environment. In: Dartnall, H.J. A. (Ed.): Handbook of Sensory Physiology VII/1, pp. 566–603. Berlin: Springer 1972.

    Google Scholar 

  • Lythgoe, J.N.: The arrangement of collagen fibrils in the iridescent cornea of the scorpion fish, Taurulus (Cottus) bubalis, and the transparency of vertebrate corneal stroma. J. Physiol. (Lond.) 262, 1–13(1976).

    CAS  Google Scholar 

  • MacNichol, E.F. Jr., Kunz, Y.W., Levine, J.S., Harosi, F.L, Collins, B. A.: Ellipsosomes: organelles containing a cytochrome-like pigment in the retinal cones of certain fishes. Science 200, 549–552 (1978).

    PubMed  CAS  Google Scholar 

  • Makous, W.: Some functional properties of visual receptors and their optical implications. Opt. Soc. Amer. 67, 1362(1977).

    Google Scholar 

  • Matsuura, T., Miller, W. H., Tomita, T.: Cone-specific c-wave in the turtle retina. Vision Res. 18, 767–775(1978).

    PubMed  CAS  Google Scholar 

  • Maurice, D.M.: The structure and transparency of the cornea. J. Physiol. (Lond.) 136, 263–286 (1957).

    CAS  Google Scholar 

  • Maurice, D.M.: The cornea and sclera. In:.Davson, H. (Ed.): The Eye, Vol. 1, pp. 289–368. New York-London: Academic Press 1962.

    Google Scholar 

  • Mazokhin-Porshnyakov, G. A.: Insect Vision. Hew York: Plenum Press 1969.

    Google Scholar 

  • McFarland, W.N., Munz, F.W.: The photic environment of clear tropical seas during the day. Vision Res. 15, 1063–1070 (1975).

    PubMed  CAS  Google Scholar 

  • Menzel, R.: The fine structure of the compound eye of Formica polyctena—functional morphology of a hymenopteran eye. In: Wehner, R. (Ed.): Information Processing in the Visual Systems of Arthropods, pp. 37–47. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Menzel, R., Blakers, M.: Colour receptors in the bee eye—morphology and spectral sensitivity. J. comp. Physiol. 108, 11–33 (1976).

    Google Scholar 

  • Menzel, R., Snyder, A. W.: Polarised light detection in the bee, Apis mellifera. J. comp. Physiol. 88, 247–270 (1974).

    Google Scholar 

  • Meyer-Rochow, V.B.: A crustacean-like organization of insect-rhabdoms. Cytobiologie 4, 241–249 (1971).

    Google Scholar 

  • Miller, W.H.: Fine structure of some invertebrate photoreceptors. Ann. N.Y. Acad. Sci. 74, 204–209 (1958 a).

    Google Scholar 

  • Miller, W.H.: Derivatives of cilia in the distal sense cells of the retina of Pecten. J. biophys. biochem. Cytol. 4, 227–228 (1958 b).

    PubMed  CAS  Google Scholar 

  • Miller, W.H.: Visual photoreceptor structures. In: Brachet, J., Mirsky, A.E. (Eds.): The Cell, pp. 325–364. New York-London: Academic Press 1960.

    Google Scholar 

  • Miller, W.H.: Optical guiding in photoreceptor cells. Fed. Proc. 35, 37–43 (1976).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Bernard, G. D.: Skipper glow. Quarterly Progress Report No. 88, Research Laboratory of Electronics, Massachusetts Institute of Technology, 114–119 (1968 a).

    Google Scholar 

  • Miller, W.H., Bernard, G. D.: Butterfly glow. J. Ultrastruct. Res. 24, 286–294 (1968 b).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Bernard, G. D.: Red glow of sulfur butterfly is caused by green tapetum. ARVO Regional Meeting, Atlantic Section, Yale Univ., New Haven (1976).

    Google Scholar 

  • Miller, W.H., Bernard, G.D., Allen, J. L.: The optics of insect compound eyes. Science 162, 760–768 (1968).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Cawthon, D. F.: Pigment granule movement in Limulus photoreceptors. Invest. Ophthal. 13, 401–405(1974).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Snyder, A. W.: Optical function of myoids. Vision Res. 12, 1841–1848 (1972).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Snyder, A. W.: Optical function of human peripheral cones. Vision Res. 13, 2185–2194 (1973).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Snyder, A. W.: Deep fovea of birds functions as telephoto lens. Invest. Ophthal. Vis. Sci. Suppl.p. 105 (1977 a).

    Google Scholar 

  • Miller, W.H., Snyder, A. W.: The tiered vertebrate retina. Vision Res. 17, 239–255 (1977 b).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Snyder, A. W.: In preparation (1979).

    Google Scholar 

  • Miller, W.H., Møller, A.R., Bernhard, C.G.: The corneal nipple array. In: Bernhard, C.G. (Ed.): Functional Organization of the Compound Eye, pp. 21–33. Oxford-New York: Pergamon Press 1966.

    Google Scholar 

  • Minke, B., Kirschfeld, K.: Microspectrophotometric evidence for two photointerconvertible states of visual pigment in the barnacle lateral eye. J. gen. Physiol. 71, 37–45 (1978).

    PubMed  CAS  Google Scholar 

  • Monaco, S.F.: Reflectance of an inhomogeneous thin film. J. Opt. Soc. Amer. 51, 280–282 (1961).

    Google Scholar 

  • Moreland, J.D., Lythgoe, J.N.: Yellow corneas in fishes. Vision Res. 8, 1377–1380 (1968).

    PubMed  CAS  Google Scholar 

  • Morris, V.B.: Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor. J. comp. Neurol. 140, 359–398 (1970).

    PubMed  CAS  Google Scholar 

  • Munk, O.: Ocular anatomy of some deep-sea teleosts. Dana report no. 70. Copenhagen: Carlsberg Foundation 1966.

    Google Scholar 

  • Muntz, W.R.A.: Inert absorbing and reflecting pigments. In: Dartnall, H.J.A. (Ed.): Handbook of Sensory Physiology. Vol. VII/1, pp. 529–565. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Muntz, F.W., McFarland, W.N.: Presumptive cone pigments extracted from tropical marine fishes. Vision Res. 15, 1045–1062 (1975).

    Google Scholar 

  • Murray, R.L., Dubin, M. W.: The occurrence of actinlike filaments in association with migrating pigment granules in frog retinal pigment epithelium. J. Cell Biol. 64, 705–710 (1975).

    PubMed  CAS  Google Scholar 

  • Nicol, J.A.C: Studies on the eyes of fishes: structure and ultrastructure. In: Ali, M.A. (Ed.): Vision in Fishes, pp. 579–608. New York-London: Plenum Press 1975.

    Google Scholar 

  • Nicol, J. A. G, Zyznar, E. S.: The tapetum lucidum in the eye of the big-eye Priacanthus arenatus Cuvier. J. Fish. Biol. 5, 519–522 (1973).

    Google Scholar 

  • Nolte, J., Brown, J.E.: The spectral sensitivities of single receptor cells in the lateral, median, and ventral eyes of normal and white-eyed Limulus. J. gen. Physiol. 55, 787–801 (1970).

    PubMed  CAS  Google Scholar 

  • Norren, D. V., Vos, J. J.: Spectral transmission of the human ocular media. Vision Res. 14, 1237–1244 (1974).

    PubMed  CAS  Google Scholar 

  • O’Brien, B.: Vision and resolution in the central retina. J. Opt. Soc. Amer. 41, 882–894 (1951).

    Google Scholar 

  • Oehme, H.: Vergleichende Untersuchungen an Greifvogelaugen. Z. Morph. Ökol. Tiere 53, 618–635 (1964).

    Google Scholar 

  • Ogden, T.E.: The receptor mosaic of Aotes trivirgatus: Distribution of rods and cones. J. Comp. Neurol. 163, 193–202 (1975).

    PubMed  CAS  Google Scholar 

  • Østerberg, G.: Topography of the layer of rods and cones in the human retina. Acta Ophthal. 13 Suppl. 6(1935).

    Google Scholar 

  • Papermaster, D.S., Schneider, B. G., Zorn, M. A., Kraehenbuhl, J.P.: Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J. Cell Biol. In press

    Google Scholar 

  • Parker, G. H.: The movements of the retinal pigment. Ergebn. Biol. 9, 239–291 (1932).

    Google Scholar 

  • Paulus, H.F.: Zum Feinbau der Komplexaugen einiger Collembolen. Eine vergleichend-anatomische Untersuchung (Insecta, Apterygota). Zool. Jahrb. Anat. 89, 1–116 (1972).

    Google Scholar 

  • Paulus, H.F.: The compound eyes of apterygote insects. In: Horridge, G. A. (Ed.): The Compound Eye and Vision of Insects, pp. 3–19. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Pedler, G: The fine structure of the tapetum cellulosum. Exp. Eye Res. 2,189–195 (1963)

    PubMed  CAS  Google Scholar 

  • Pirie, A.: Crystals of riboflavin making up the tapetum lucidum in the eyes of a lemur. Nature (Lond.) 183,985–986 (1959).

    CAS  Google Scholar 

  • Pitts, D. G.: Transmission of the visible spectrum through the ocular media of the bovine eye. Amer. J. Opt. 36,289–298 (1959).

    CAS  Google Scholar 

  • Polyak, S.L.: The retina. Chicago: The University of Chicago Press 1941.

    Google Scholar 

  • Pumphrey, R. J.: The theory of the fovea. J. exp. Biol. 25, 299–310 (1948).

    Google Scholar 

  • Pumphrey, R.J.: Concerning vision. In: Ramsay, J.A., Wigglesworth, V.B. (Eds.): The Cell and the Organism. Cambridge: University Press 1961a.

    Google Scholar 

  • Pumphrey, R.J.: Sensory organs: vision. In: Biology and Comparative Physiology of Birds. New York: Academic Press 1961 b.

    Google Scholar 

  • Rayleigh, Lord: On the light from the sky, its polarization and colour. Philos. Mag. 41, 107–120, 274–279(1871).

    Google Scholar 

  • Rayleigh, Lord: On the electromagnetic theory of light. Philos. Mag. 12, 81–101 (1881).

    Google Scholar 

  • Rayleigh, Lord: Sky. In: Encyclopedia Britannica, Vol.XXV, 11th Ed. 1911.

    Google Scholar 

  • Ribi, W. A.: Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. (Lepidoptera, Pieridae). Cell Tiss. Res. 191, 57–73 (1978).

    CAS  Google Scholar 

  • Riggs, L. A.: Visual acuity. In: Graham, C. H. (Ed.): Vision and Visual Perception. New York-London-Sydney: John Wiley 1966.

    Google Scholar 

  • Robson, J.G., Enroth-Cugell, G: Light distribution in the cat’s retinal image. Vision Res. 18, 159–173 (1978).

    PubMed  CAS  Google Scholar 

  • Rose, A.: The sensitivity performance of the human eye on an absolute scale. J. Opt. Soc. Amer. 38, 196–208 (1948).

    CAS  Google Scholar 

  • Roth, W.: Ein paar interessante Aquarienfische. Dtsch. Fischerei Korrespondenz 15, 107–109 (1911).

    Google Scholar 

  • Schneider, L., Gogala, M., Drašlar, K., Langer, H., Schlecht, P.: Feinstruktur und Schirmpigment-Eigenschaften der Ommatidien des Doppelauges von Ascalaphus (Insecta, Neuroptera). Cytobiologie 16, 274–307(1978).

    Google Scholar 

  • Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik 6,149–162 (1969).

    PubMed  CAS  Google Scholar 

  • Sherk, T.E.: Development of the compound eyes of dragonflies (Odonata). J. exp. Zool. 201, 391–416 (1977).

    Google Scholar 

  • Sherk, T. E.: Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J. exp. Zool. 203, 61–80 (1978).

    PubMed  CAS  Google Scholar 

  • Shlaer, R.: An eagle’s eye: quality of the retinal image. Science 176, 920–922 (1972).

    PubMed  CAS  Google Scholar 

  • Shlaer, S.: The relation between visual acuity and illumination. J. gen. Physiol. 21, 165–188 (1937).

    PubMed  CAS  Google Scholar 

  • Sidman, R.: The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy. J. biophys. biochem. Cytol. 3, 15–30 (1957).

    PubMed  CAS  Google Scholar 

  • Sivak, J.G., Bobier, W.R.: Chromatic aberration of the fish eye and its effect on refractive state. Vision Res. 18, 453–455 (1978).

    PubMed  CAS  Google Scholar 

  • Skrzipek, K.-H., Skrzipek, H.: Die spektrale Transmission und die optische Aktivität des dioptrischen Apparates der Honigbiene (Apis mellifica L.). Experientia 30, 314–315 (1974).

    PubMed  CAS  Google Scholar 

  • Snyder, A.W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol. 83, 331–360 (1973).

    Google Scholar 

  • Snyder, A.W.: Photoreceptor optics—theoretical principles. In: Snyder, A.W., Menzel, R. (Eds.): Photoreceptor Optics, pp.38–55. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Snyder, A. W.: Acuity of compound eyes: physical limitations and design. J. comp. Physiol. 116, 161–182(1977).

    Google Scholar 

  • Snyder, A. W., Menzel, R., Laughlin, S. B.: Structure and function of the fused rhabdom. J. comp. Physiol. 87, 99–135 (1973).

    Google Scholar 

  • Snyder, A. W., Miller, W. H.: Fly colour vision. Vision Res. 12, 1389–1396 (1972).

    Google Scholar 

  • Snyder, A. W., Miller, W.H.: Photoreceptor diameter and spacing for highest resolving power. J. Opt. Soc. Amer. 67, 696–698 (1977 a).

    CAS  Google Scholar 

  • Snyder, A.W., Miller, W.H.: Telephoto lens system of falconiform eyes. Nature 275, 127–129 (1978)

    PubMed  CAS  Google Scholar 

  • Snyder, A. W., Pask, C: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol. 84, 59–76 (1973).

    Google Scholar 

  • Stavenga, D.G.: Visual adaptation in butterflies. Nature (Lond.) 254, 435–437 (1975a).

    CAS  Google Scholar 

  • Stavenga, D.G.: Optical qualities of the fly eye—an approach from the side of geometrical, physical, and waveguide optics. In: Photoreceptor optics. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Stavenga, D.G.: Waveguide modes and refractive index in photoreceptors of invertebrates. Vision Res. 15,323–330 (1975 b).

    PubMed  CAS  Google Scholar 

  • Stavenga, D.G., Kuiper, J.W.: Insect pupil mechanisms. I. J. comp. Physiol. 113, 55–72 (1977).

    Google Scholar 

  • Stavenga, D.G., Numan, J.A.J., Tinbergen, J., Kuiper, J.W.: Insect pupil mechanisms. II. J. comp. Physiol. 113, 73–93 (1977).

    Google Scholar 

  • Stavenga, D.G., Zantema, A., Kuiper, J.W.: Rhodopsin processes and the function of the pupil mechanism in flies. In: Langer, H. (Ed.): Biochemistry and Physiology of Visual Pigments, pp. 175–180. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Steinberg, R.H., Reid, M., Lacy, P. L.: The distribution of rods and cones in the retina of the cat (Felis domesticus). J. comp. Neurol. 148, 229–248 (1973).

    PubMed  CAS  Google Scholar 

  • Stell, W.K., Harosi, F.I.: Cone structure and visual pigment content in the retina of the goldfish. Vision Res. 16, 647–658 (1976).

    PubMed  CAS  Google Scholar 

  • Steyskal, G. C.: Notes on color and pattern of eye in diptera. II. Bull. Brooklyn Entomol. Soc. 52, 89–94(1957).

    Google Scholar 

  • Swihart, S. L., Gordon, W.C., Machwart, R.J.: Reflections on the eyes of butterflies. J. Insect Physiol. 20, 359–381(1974).

    Google Scholar 

  • Tobey, F.L.Jr., Enoch, J. M., Scandrett, J.H.: Experimentally determined optical properties of goldfish cones and rods. Invest. Ophthal. 14, 7–23 (1975).

    PubMed  Google Scholar 

  • Trujillo-Cenóz, O., Bernard, G. D.: Some aspects of the retinal organization of Sympycnus lineatus Loew (Diptera, Dolichopodidae). J. Ultrastruc. Res. 38, 149–160 (1972).

    Google Scholar 

  • Twersky, V.: Transparency of pair-correlated, random distributions of small scatterers, with applications to the cornea. J. Opt. soc. Amer. 65, 524–530 (1975).

    CAS  Google Scholar 

  • Underwood, G.: On the visual-cell pattern of a homalopsine snake. J. Anat. 100, 571–575 (1966).

    PubMed  CAS  Google Scholar 

  • Varela, F.G., Wiitanen, W.: The optics of the compound eye of the honeybee (Apis mellifera). J. Gen. Physiol. 55, 336–358 (1970).

    PubMed  CAS  Google Scholar 

  • Versluys, J., Demoll, R.: Das Limulus-Problem. Ergeb. Fortschr. Zool. 5, 67–388 (1923).

    Google Scholar 

  • Vogt, K.: Zur Optik des Flußkrebsauges (Optics of the crayfish eye). Z. Naturforsch. 30c, 691 (1975).

    Google Scholar 

  • Wässle, H.: Optical quality of the cat eye. Vision Res. 11, 995–1006 (1971).

    PubMed  Google Scholar 

  • Wässle, H., Riemann, H.J.: The mosaic of nerve cells in the mammalian retina. Proc. Roy. Soc. B 200, 441–461 (1978).

    Google Scholar 

  • Walcott, B.: Anatomical changes during light-adaptation in insect compound eyes. In: Horridge, G. A. (Ed.): The Compound Eye and Vision of Insects, pp.20–36. Oxford: Clarendon Press, 1975

    Google Scholar 

  • Wald, G.: Blue-blindness in the normal fovea. J. Opt. Soc. Amer. 57, 1289–1301 (1967).

    CAS  Google Scholar 

  • Walls, G.L.: Significance of the foveal depression. Arch. Ophthal. 18, 912–919 (1937).

    Google Scholar 

  • Walls, G.L.: Postscript on image expansion by the foveal clivus. Arch. Ophthal. 23, 831–832 (1940).

    Google Scholar 

  • Walls, G.L.: The Vertebrate Eye and its Adaptive Radiation. New York-London: Hafner Publ. Comp. 1967.

    Google Scholar 

  • Walls, G. L., Judd, H.D.: The intra-ocular colour-filters of vertebrates. Br. J. Ophthalmol., Nov. 1933, pp.641–675; Dec. 1933, pp.705–725 (1933).

    Google Scholar 

  • Wasserman, G. S.: Density spectrum of Limulus screening pigment. J. Gen. Physiol. 50, 1075–1077 (1967).

    PubMed  CAS  Google Scholar 

  • Wehner, R., Bernard, G.D., Geiger, E.: Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J. comp. Physiol. 104, 225–245 (1975).

    Google Scholar 

  • Westheimer, G.: Modulation thresholds for sinusoidal light distributions on the retina. J. Physiol. (Lond.) 152, 67–74 (1960).

    CAS  Google Scholar 

  • Westheimer, G.: Optical properties of vertebrate eyes. In: Fuortes, M.G.F. (Ed.): Handbook of Sensory Physiology, VII/2, pp.449–482. Berlin-Heidelberg-New York: Springer, 1972a.

    Google Scholar 

  • Westheimer, G.: Visual acuity and spatial modulation thresholds. In: Jameson, D., Hurvich, L.M. (Eds.): Handbook of Sensory Physiology VII/4, pp. 170–187. Berlin-Heidelberg-New York: Springer 1972b

    Google Scholar 

  • Westheimer, G.: Visual acuity and hyperacuity. Invest. Ophthal. 14, 570–572 (1975).

    PubMed  CAS  Google Scholar 

  • White, R. H., Lord, E.: Diminution and enlargement of the mosquito rhabdom in light and darkness. J. gen. Physiol. 65, 583–598 (1975).

    PubMed  CAS  Google Scholar 

  • Wiesinger, H., Schmidt, F.H., Williams, R.C., Tiller, C.O., Ruffin, R.S., GuerryIII, D., Ham Jr., W.T.: The transmission of light through the ocular media of the rabbit eye. Amer. J. Ophthal. 42, 907–910(1956).

    PubMed  Google Scholar 

  • Wijngaard, W., Stavenga, D. G.: On optical crosstalk between fly rhabdomeres. Biol. Cybern. 18, 61–67 (1975).

    PubMed  CAS  Google Scholar 

  • Wilson, M.: Angular sensitivity of light and dark adapted locust retinula cells. J. comp. Physiol. 97, 323–328 (1975).

    Google Scholar 

  • Wolbarsht, M. L.: The function of intraocular color filters. Fed. Proc. 35, 44–50 (1976).

    PubMed  CAS  Google Scholar 

  • Wood, R.W.: Physical Optics. (See p.427). New York: Dover Publications, Inc., 1967.

    Google Scholar 

  • Woodhouse, J.M., Campbell, F.W.: The role of the pupil light reflex in aiding adaptation to the dark. Vision Res. 15, 649–653 (1975).

    PubMed  CAS  Google Scholar 

  • Yagi, N., Koyama, N.: The Compound Eye of Lepidoptera. Approach from Organic Evolution. Tokyo: Shinkyo-Press & Co., Ltd., 1963.

    Google Scholar 

  • Zuckerman, J., Srinivasan, M., Miller, W.H.: Central obscuration of the vertebrate pupil. In preparation 1979.

    Google Scholar 

  • Zyznar, E.S.: Tapeta lucida and the organisation of visual cells in teleosts. In: Vision in Eyes. New York-London: Plenum Press 1975a.

    Google Scholar 

  • Zyznar, E.S.: Theoretical considerations about tapeta lucida. In: Vision in Eyes. New York-London: Plenum Press, 1975b.

    Google Scholar 

  • Zyznar, E. S., Ali, M. A.: An interpretative study of the organization of the visual cells and tapetum lucidum of Stizostedion. Can. J. Zool. 53, 180–196 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Miller, W.H. (1979). Ocular Optical Filtering. In: Autrum, H. (eds) Comparative Physiology and Evolution of Vision in Invertebrates. Handbook of Sensory Physiology, vol 7 / 6 / 6 A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66999-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66999-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67001-5

  • Online ISBN: 978-3-642-66999-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics