Extraocular Light Receptors and Circadian Rhythms

  • Miriam F. Bennett
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 6 / 6 A)


For organisms to which functioning in time with the solar day is vital, transitions from light to dark or from dark to light are some of the most reliable Zeitgebers or indicators of real time available to them in their physical environments. In its natural habitat, an animal or plant can use such changes to orient itself precisely to the day-night phases of a world which is characterized by many cyclic geophysical variations which influence and affect organisms and their behavior.


Fiddler Crab Circadian Cycle Abdominal Ganglion Locomotor Activity Rhythm Tidal Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, K.: The role of extraoptic photoreceptors in amphibian rhythms and orientation: A review. J. Herpetol. 4, 99–122 (1970).Google Scholar
  2. Arvanitaki, A., Chalazonitis, N.: Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells. (Giant ganglion cells of Aplysia). In: Nervous Inhibition. ed. E. Florey, pp. 194–231. New York: Pergamon Press 1961.Google Scholar
  3. Aschoff, J.: Exogenous and endogenous components in circadian rhythms. Cold Spr. Harb. Symp. quant. Biol. 25, 11–28 (1960).Google Scholar
  4. Audesirk, G., Strumwasser, F.: Circadian rhythm of neuron R15 of Aplysia californica: In vivo photoentrainment. Proc. nat. Acad. Sci. (Wash.) 72, 2408–2412 (1975).Google Scholar
  5. Axelrod, J.: The pineal gland: A neurochemical transducer. Science 184, 1341–1348 (1974).PubMedGoogle Scholar
  6. Ball, H.J.: Photosensitivity in the terminal abdominal ganglion of Periplaneta americana (L.). J. Insect Physiol. 11, 1311–1315 (1965).Google Scholar
  7. Ball, H. J., Chaudhury, M.F.B.: Photic entrainment of circadian rhythms by illumination of implanted brain tissues in the cockroach Blaberus craniifer. J. Insect Physiol. 19, 823–830 (1973).Google Scholar
  8. Batham, E.J., Pantin, C.F. A.: Phases of activity in the sea-anemone, Metridium senile (L.), and their relation to external stimuli. J. exp. Biol. 27, 377–399 (1950).PubMedGoogle Scholar
  9. Beck, S.D.: Photoperiodic determination of insect development and diapause. I. Oscillators, hourglasses and a determination model. J. comp. Physiol. 90, 275–295 (1974a).Google Scholar
  10. Beck, S.D.: Photoperiodic determination of insect development and diapause. II. The determination gate in a theoretical model. J. comp. Physiol. 90, 297–310 (1974b).Google Scholar
  11. Beck, S. D.: Photoperiodic determination of insect development and diapause. III. Effects of nondiel photoperiods. J. comp. Physiol. 103, 227–245 (1975).Google Scholar
  12. Beck, S.D.: Photoperiodic determination of insect development and diapause. IV. Effects of skeleton photoperiods. J. comp. Physiol. 105, 267–277 (1976a).Google Scholar
  13. Beck, S. D.: Photoperiodic determination of insect development and diapause. V. Diapause, circadian rhythms, and phase response curves, according to the dual system theory. J. comp. Physiol. 107, 97–111 (1976b).Google Scholar
  14. Becker-Carus, C.: Die Bedeutung der Tageszeit für Sensibilität, Reizsättigung und Entscheidungsaktivität bei Planarien (Dugesia dorotoeephala). Z. Tierpsychol. 27, 761–770 (1970).Google Scholar
  15. Beiswanger, C.M., Jacklet, J.W.: In vitro tests for a circadian rhythm in the electrical activity of a single neuron in Aplysia californica. J. comp. Physiol. 103, 19–37 (1975).Google Scholar
  16. Bennett, M. F.: The rhythmic activity of the quahog, Venus mercenaria, and its modification by light. Biol. Bull. 107, 174–191 (1954).Google Scholar
  17. Bennett, M.F.: The central nervous system and circadian differences in the earthworm. In: Neurobiology of Invertebrates. Mechanisms of Rhythm Regulation, ed. J. Salánki, pp. 353–361. Budapest: Akadémiai Kiadó 1973.Google Scholar
  18. Bennett, M.F.: Living Clocks in the Animal World. Springfield: Charles C.Thomas 1974.Google Scholar
  19. Bennett, M.F.: Rhythms in worms and worm-like organisms. In: Biological Rhythms in the Marine Environment, ed. P. J. DeCoursey, pp. 137–144. Columbia: Univ. South Carolina Press 1976.Google Scholar
  20. Bennett, M. F., Reinschmidt, D.C.: The diurnal cycle and a difference in reaction times in earthworms. Z. vergl. Physiol. 49, 407–411 (1965).Google Scholar
  21. Best, J. B.: Diurnal cycles and cannibalism in planaria. Science 131, 1884–1885 (1960).PubMedGoogle Scholar
  22. Bliss, D.: Neuroendocrine control of locomotor activity in the land crab, Gecarcinus lateralis. In: Memoirs of the Society for Endocrinology, ed. H. Heller, R. B. Clark, pp. 391–410. London-New York: Academic Press 1962.Google Scholar
  23. Block, G.D., Hudson, D. J., Lickey, M.E.: Extraocular photoreceptors can entrain the circadian oscillator in the eye of Aplysia. J. comp. Physiol. 89, 237–249 (1974).Google Scholar
  24. Block, G.D., Lickey, M.E.: Extraocular photoreceptors and oscillators can control the circadian rhythm of behavioral activity in Aplysia. J. comp. Physiol. 84, 367–374 (1973).Google Scholar
  25. Block, G.D., Smith, J.T.: Cerebral photoreceptors in Aplysia. Comp. Biochem. Physiol. 46A, 115–121 (1973).Google Scholar
  26. Brady, J.: The physiology of insect circadian rhythms. Advanc. Insect Physiol. 10, 1–115 (1974).Google Scholar
  27. Brett, W.J.: Persistent diurnal rhythmicity in Drosophila emergence. Ann. Entomol. Soc. Amer. 48, 119–131(1955).Google Scholar
  28. Brown, A.M., Baur, P.S., Jr., Tuley, F.H., Jr.: Phototransduction in Aplysia neurons: Calcium release from pigmented granules is essential. Science 188, 157–160 (1974).Google Scholar
  29. Brown, F.A., Jr.: Chromatophores and color change. In: Comparative Animal Physiology, ed. C.L.Prosser, 3rd Ed., pp. 915–950. Philadelphia-London-Toronto: W.B.Saunders Co. 1973.Google Scholar
  30. Brown, F. A., Jr., Bennett, M. F., Webb, H. M.: Persistent daily and tidal rhythms of O2-consumption in fiddler crabs. J. cell. comp. Physiol. 44, 477–505 (1954).Google Scholar
  31. Bünning, E.: Zur Kenntnis der endogenen Tagesrhythmik bei Insekten und bei Pflanzen. Ber. dtsch. Botan. Ges. 53, 594–623 (1935).Google Scholar
  32. Bünning, E.: Circadian rhythms and the time measurement in photoperiodism. Cold Spr. Harb. Symp. quant. Biol. 25, 249–256 (1960).Google Scholar
  33. Biinning, E.: The adaptive value of circadian leaf movements. In: Biochronometry, ed. M. Menaker, p. 203–211. Washington: National Academy Sci. 1971.Google Scholar
  34. Bünning, E.: Die physiologische Uhr. Dritte, gründlich überarbeitete Auflage. Berlin-Heidelberg-New York: Springer 1977.Google Scholar
  35. Claret, J.: Mise en évidence du rôle photorécepteur du cerveau dans l’induction de la diapause chez Pieris brassicae (Lepidoptera). Ann. Endocr. (Paris) 27, 311–320 (1966).Google Scholar
  36. Cloudsley-Thompson, J.L.: LXIX.—Studies in diurnal rhythms.—III. Photoperiodism in the cockroach Periplaneta americana (L.). Ann. Mag. Nat. Hist. 6, 705–712 (1953).Google Scholar
  37. Dodd, J.R.: Effect of light on rate of growth of bivalves. Nature (Lond.) 224, 617–618 (1969).Google Scholar
  38. Dumortier, B.: Photoreception in the circadian rhythm of stridulatory activity in Ephippiger (Ins., Orthoptera). Likely existence of two photoreceptive systems. J. comp. Physiol. 77, 80–112 (1972).Google Scholar
  39. Eidmann, H.: Über rhythmische Erscheinungen bei der Stabheuschrecke Carausius morosus Br. Z. vergl. Physiol. 38, 370–390 (1956).Google Scholar
  40. Engelmann, W., Honegger, H.W.: Tagesperiodische Schlüpfrhythmik einer augenlosen Drosophila melanogaster-Mutante. Naturwissenschaften 53, 588 (1966).PubMedGoogle Scholar
  41. Eskin, A.: Properties of the Aplysia visual system: in vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Z. vergl. Physiol. 74, 353–371 (1971).Google Scholar
  42. Fingerman, M.: Comparative physiology: Chromatophores. Ann. Rev. Physiol. 32, 345–372 (1970).Google Scholar
  43. Fingerman, M., Yamamoto, Y.: Daily rhythm of color change in the eyestalkless fiddler crabs, Uca pugilator. Amer. Zool. 4, 334 (1964).Google Scholar
  44. Fischer, A.: Über die Chromatophoren und den Farbwechsel bei dem Polychäten Platynereis dumerilii. Z. Zellforsch. 65, 290–312 (1965).PubMedGoogle Scholar
  45. Fowler, D.J., Goodnight, C.J.: The cyclic production of 5-hydroxytryptamine in the opilionid. Amer. Zool. 6, 187–193 (1966).Google Scholar
  46. Fowler, D.J., Goodnight, C.J.: In vitro regulation by light of 24-hour rhythmic serotonin production. J. interdiscipl. Cycle Res. 6, 121–128 (1975).Google Scholar
  47. Frank, K.D., Zimmermann, W. F.: Action spectra for phase shifts of a circadian rhythm in Drosophila. Science 163, 688–689 (1969).PubMedGoogle Scholar
  48. Gardner, L.E., Ratner, S.C: In-burrow behavior of earthworms. Psychol. Rec. 20, 387–394 (1970).Google Scholar
  49. Hamann, A.: Die neuroendokrine Steuerung tagesrhythmischer Blutzuckerschwankungen durch die Sinusdrüse beim Flußkrebs. J. comp. Physiol. 89, 197–214 (1974).Google Scholar
  50. Hauenschild, C.: Die Schwärmperiodizität von Platynereis dumerilii im DD-LD-Belichtungszyklus und nach Augenausschaltung. Z. Naturforsch. 16b, 753–756 (1961).Google Scholar
  51. Hayes, D.K.: Action spectra for breaking diapause and absorption spectra of insect brain tissue. In: Biochronometry, ed. M. Menaker, pp. 392–402. Washington: National Academy Sci. 1971.Google Scholar
  52. Henkart, M.: Light-induced changes in the structure of pigmented granules in Aplysia neurons. Science 188, 155–157 (1974).Google Scholar
  53. Hoffmann, K.: Splitting of the circadian rhythm as a function of light intensity. In: Biochronometry, ed. M. Menaker, p. 134–151. Washington: National Academy Sci. 1971.Google Scholar
  54. Jacklet, J.W.: Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science 164, 562–563 (1969).PubMedGoogle Scholar
  55. Jacklet, J.W.: Circadian locomotor activity in Aplysia. J. comp. Physiol. 79, 325–341 (1972).Google Scholar
  56. Kalmus, H.: Das Actogramm des Flußkrebses und seine Beeinflussung durch Organextrakte. Z. vergl. Physiol. 25, 789–802 (1938a).Google Scholar
  57. Kalmus, H.: Die Lage des Aufnahmeorganes für die Schlüpfperiodik von Drosophila. Z. vergl. Physiol. 26, 362–365 (1938b).Google Scholar
  58. Kupfermann, I.: A circadian locomotor rhythm in Aplysia californica. Physiol. Behav. 3, 179–181 (1968).Google Scholar
  59. Lees, A.D.: Some aspects of animal photoperiodism. Cold Spr. Harb. Symp. quant. Biol. 25, 261–268 (1960).Google Scholar
  60. Lees, A.D.: The location of the photoperiodic receptors in the aphid Megoura viciae Buckton. J. exp. Biol. 41, 119–133 (1964).PubMedGoogle Scholar
  61. Lees, A.D.: Photoperiodic timing mechanisms in insects. Nature (Lond.) 210, 986–989 (1966).Google Scholar
  62. Lees, A. D.: The relevance of action spectra in the study of insect photoperiodism. In: Biochronometry, ed. M. Menaker, pp. 372–380. Washington: National Academy Sci. 1971.Google Scholar
  63. Lickey, M.E.: Seasonal modulation and non-24-hour entrainment of a circadian rhythm in a single neuron. J. comp. Physiol. Psychol. 68, 9–17 (1969).PubMedGoogle Scholar
  64. Lickey, M.E., Zack, S.: Extraocular photoreceptors can entrain the circadian rhythm in the abdominal ganglion of Aplysia. J. comp. Physiol. 84, 361–366 (1973).Google Scholar
  65. Loher, W.: Circadian control of stridulation in the cricket Teleogryllus commodus Walker. J. comp. Physiol. 79, 173–190 (1972).Google Scholar
  66. Loher, W., Chandrashekaran, M.K.: Circadian rhythmicity in the oviposition of the grasshopper Chorthippus curtipennis. J. Insect Physiol. 16, 1677–1688 (1970).PubMedGoogle Scholar
  67. Lukowiak, K., Jacklet, J.W.: Habituation: A peripheral and central nervous system process in Aplysia. Fed. Proc. 31, 405 (1972).Google Scholar
  68. Megusär, F.: Experimente über den Farbwechsel der Crustaceen. Arch. Entwickl.-Mech. Org. 33, 462–665 (1912).Google Scholar
  69. Menaker, M.: Nonvisual light reception. Sci. Amer. 226(3), 22–29 (1972).PubMedGoogle Scholar
  70. Mori, S.: Influence of environmental and physiological factors on the daily rhythmic activity of a sea-pen. Cold Spr. Harb. Symp. quant. Biol. 25, 333–344 (1960).Google Scholar
  71. Mori, S., Matutani, K.: Studies on the daily rhythmic activity of the starfish, Astropecten polyacanthus Müller et Troschel, and the accompanied physiological rhythms. Publ. Seto Mar. Biol. Lab. II(2), 213–225 (1952).Google Scholar
  72. Mori, S., Ondo, Y.: Daily rhythmic activity of the sea-pen, Cavernularia obesa Valenciennes. XV. Controlling of the activity by light. (3). Publ. Seto Mar. Biol. Lab. 6, 79–98 (1957).Google Scholar
  73. Naylor, E., Williams, B.G.: Effects of eyestalk removal on rhythmic locomotor activity in Carcinus. J. exp. Biol. 49, 107–116 (1968).Google Scholar
  74. Neville, A. C.: Circadian organization of chitin in some insect skeletons. Quart. J. Micr. Sci. 106, 315–325 (1965).Google Scholar
  75. Neville, A.C.: A dermal light sense influencing skeletal structure in locusts. J. Insect Physiol. 13, 933–939 (1967).Google Scholar
  76. Nishiitsutsuji-Uwo, J., Pittendrigh, C.S.: Central nervous system control of circadian rhythmicity in the cockroach. II. The pathway of light signals that entrain the rhythm. Z. vergl. Physiol. 58, 1–13 (1968).Google Scholar
  77. Njus, D., Sulzman, F.M., Hastings, J. W.: Membrane model for the circadian clock. Nature (Lond.) 248, 116–120(1974).Google Scholar
  78. Nowosielski, J.W., Patton, R.L.: Studies on circadian rhythm of the house cricket, Gryllus domesticus L. J. Insect Physiol. 9, 401–410 (1963).Google Scholar
  79. Page, T.L., Larimer, J. L.: Entrainment of the circadian locomotor activity rhythm in crayfish. The role of the eyes and caudal photoreceptor. J. comp. Physiol. 78, 107–120 (1972).Google Scholar
  80. Page, T.L., Larimer, J. L.: Neural control of circadian rhythmicity in the crayfish. I. The locomotor activity rhythm. J. comp. Physiol. 97, 59–80 (1975a).Google Scholar
  81. Page, T.L., Larimer, J. L.: Neural control of circadian rhythmicity in the crayfish. II. The ERG amplitude rhythm. J. comp. Physiol. 97, 81–96 (1975b).Google Scholar
  82. Palmer, J.D.: Biological Clocks in Marine Organisms: The Control of Physiological and Behavioral Tidal Rhythms. New York-London-Sydney-Toronto: John Wiley and Sons 1974.Google Scholar
  83. Powell, B.L.: The hormonal control of the tidal rhythm of locomotor activity in Carcinus maenas. Gen. Comp. Endocr. 5, 705 (1965).Google Scholar
  84. Prosser, C.L.: Action potentials in the nervous system of the crayfish. II. Responses to illumination of the eye and caudal ganglion. J. cell. comp. Physiol. 4, 363–377 (1934).Google Scholar
  85. Röseler, I.: Die Rhythmik der Chromatophoren des Polychaeten Platynereis dumerilii. Z. vergl. Physiol. 70, 144–174 (1970).Google Scholar
  86. Salanki, J.: Neural mechanisms in rhythm regulation of invertebrates. In: Neurobiology of Invertebrates. Mechanisms of Rhythm Regulation, ed. J.Salánki, pp. 17–31. Budapest: Akadémiai Kiadó 1973.Google Scholar
  87. Saunders, D.S.: Insect Clocks. Oxford: Pergamon Press 1976.Google Scholar
  88. Stephens, G.J., Halberg, F., Stephens, G.C.: The blinded fiddler crab: An invertebrate model of circadian desynchronization. Ann. N. Y. Acad. Sci. 117, 386–406 (1964).PubMedGoogle Scholar
  89. Steven, D.M.: The dermal light sense. Biol. Rev. 38, 204–240 (1963).PubMedGoogle Scholar
  90. Strumwasser, F.: The demonstration and manipulation of a circadian rhythm in a single neuron. In: Circadian Clocks, ed. J. Aschoff, pp. 442–462. Amsterdam: North-Holland Publ. Co. 1965.Google Scholar
  91. Sweeney, B.M.: Circadian rhythms in corals, particularly Fungiidae. Biol. Bull. 151, 236–246 (1976).PubMedGoogle Scholar
  92. Thompson, I.L.: Biological clock control and shell growth in the bivalve Mercenaria mercenaria. Abstracts with Programs. Geol. Soc. Amer. 2, 704 (1970).Google Scholar
  93. Truman, J. W.: The role of the brain in the ecdysis rhythm of silkmoths: Comparisons with the photoperiodic termination of diapause. In: Biochronometry, ed. M. Menaker, pp. 483–504. Washington: National Academy of Sciences 1971.Google Scholar
  94. Truman, J. W.: Physiology of insect rhythms. II. The silkmoth brain as the location of the biological clock controlling eclosion. J. comp. Physiol. 81, 99–114 (1972).Google Scholar
  95. Truman, J. W.: Physiology of insect rhythms. IV. Role of the brain in the regulation of the flight rhythm of the giant silkmoths. J. comp. Physiol. 95, 281–296 (1974).Google Scholar
  96. Truman, J. W., Riddiford, L.M.: Neuroendocrine control of ecdysis in silkmoths. Science 167, 1624–1626 (1970).PubMedGoogle Scholar
  97. Valle, C., Pellegrino, J., Alvarenga, N.: Ritmo circadiano de emergência de cercârias (Schistosoma mansoni-Biomphalaria glabrata). Rev. Brasil Biol. 31, 53–63 (1971).PubMedGoogle Scholar
  98. Webb, H.M.: Diurnal variations of response to light in the fiddler crab, Uca. Physiol. Zool. 23, 316–337 (1950).Google Scholar
  99. Webb, H.M., Bennett, M. F., Brown, F. A., Jr.: A persistent diurnal rhythm of chromatophoric response in eyestalkless Uca pugilator. Biol. Bull. 106, 371–377 (1954).Google Scholar
  100. Wheeler, A.P., Blackwelder, P.L., Wilbur, K.M.: Shell growth in the scallop Argopecten irradians. I. Isotope incorporation with reference to diurnal growth. Biol. Bull. 148, 472–482 (1975).Google Scholar
  101. Williams, C.M., Adkinson, P.L.: Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm, Antheraea pernyi. Biol. Bull. 127, 511–525 (1964).Google Scholar
  102. Winfree, A.T.: Corkscrews and singularities in fruitflies: Resetting behavior of the circadian eclosion rhythm. In: Biochronometry, ed. M. Menaker, pp. 81–109. Washington: National Acad. Sci. 1971.Google Scholar
  103. Winfree, A.T.: Suppressing Drosophila circadian rhythm with dim light. Science 183, 970–972 (1974).PubMedGoogle Scholar
  104. Wrenn, S.A.: Daily increment formation and synchronization in the shell of the bay scallop. Amer. Zool. 12, XXXVII (Abstract 417) (1972).Google Scholar
  105. Wurtmann, R.J.: The effects of light on man and other mammals. Ann. Rev. Physiol. 37, 467–483 (1975).Google Scholar
  106. Yoshida, M.: Extraocular photoreception. In: Invertebrate-Photoreceptor Organs. Handbook of Sensory Physiology, Vol. VII/6A. Berlin-Heidelberg-New York: Springer 1979.Google Scholar
  107. Zimmerman, W. F., Goldsmith, T. H.: Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depleted Drosophila. Science 171, 1167–1169 (1971).PubMedGoogle Scholar
  108. Zimmerman, W. F., Ives, D.: Some photophysiological aspects of circadian rhythmicity in Drosophila. In: Biochronometry, ed. M. Menaker, pp. 381–391. Washington: National Acad. Sci. 1971.Google Scholar
  109. Zwickey, K.T.: A light response in the tail of Urodacus, a scorpion. Life Sci. [II] 7, 257–262 (1968).Google Scholar
  110. Zwickey, K.T.: Behavioural aspects of the extraocular light sense of Urodacus, a scorpion. Experientia (Basel) 26, 747–748 (1970).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1979

Authors and Affiliations

  • Miriam F. Bennett
    • 1
  1. 1.WatervilleUSA

Personalised recommendations