Problems of Re-entrainment of Circadian Rhythms: Asymmetry Effect, Dissociation and Partition

  • J. Aschoff
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Entrained circadian rhythms maintain a more or less distinct phase-angle difference with respect to the Zeitgeber (ASCHOFF, 1965). After a sudden shift of the Zeitgeber, several periods are required to reestablish this phase relationship. Usually, the circadian system follows advance shifts of the Zeitgeber by advances, and delay shifts by delays. However, with 12-hour shifts of the Zeitgeber (= 180° shift), the circadian system may go through advance shifts despite the 50% lengthening of one Zeitgeber period. Further, within an organism, some rhythms may follow the Zeitgeber, while others move into the opposite direction: re-entrainment by “partition”. There is, finally, the phenomenon of “asymmetry”, in which the time necessary for re-entrainment differs between advance and delay shifts.


Circadian Rhythm Activity Rhythm Japanese Quail Plasma Corticosterone Time Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASCHOFF, J.: The phase angle difference in circadian periodicity. In: CIRCADIAN CLOCKS. ASCHOFF, J. (ed.). Amsterdam: North-Holland, 1965, pp. 263–276Google Scholar
  2. ASCHOFF, J., HOFFMANN, K., POHL, H., WEVER, R.: Re-entrainment of circadian rhythms after phase shifts of the Zeitgeber. Chronobiologia 2, 23–78 (1975)PubMedGoogle Scholar
  3. ASCHOFF, J., POHL, H.: Phase-relations between a circadian rhythm and its Zeitgeber within the range of entrainment. Naturwissenschaften 65, 80–84 (1978)PubMedCrossRefGoogle Scholar
  4. ASCHOFF, J., SAINT-PAUL, U.V., WEVER, R.: Die Lebensdauer von Fliegen unter dem Einfluß von Zeit-Verschiebungen. Naturwissenschaften 58, 574 (1971)PubMedCrossRefGoogle Scholar
  5. ASCHOFF, J., WEVER, R.: Resynchronisation der Tagesperiodik von Vögeln nach Phasensprung des Zeitgebers. Z. Vergl. Physiol. 46, 321–335 (1963)CrossRefGoogle Scholar
  6. ASCHOFF, J., WEVER, R.: Human circadian rhythms: a multi-oscillator system. Federation Proc. 35, 2326–2332 (1976)Google Scholar
  7. BOISSIN, J., NOUGUIER-SOULE, J., ASSENMACHER, I.: Free-running, entrained and resynchronized circadian rhythms of plasma corticosterone and locomotor activity in the quail. Int. J. Chronobiol. 3, 89–125 (1975)Google Scholar
  8. CHIBA, Y., CUTKOMP, L.K., HALBERG, F.: Circadian oxygen consumption rhythm of the flour beetle, Tribolum confusum. J. Insect. Physiol. 19, 2163–2172 (1973)PubMedCrossRefGoogle Scholar
  9. DAAN, S., PITTENDRIGH, C.S.: A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J. comp. Physiol. 106, 253–266 (1976a)Google Scholar
  10. DAAN, S., PITTENDRIGH, C.S.: A functional analysis of circadian pacemakers in nocturnal rodents. III. Heavy water and constant light: Homeostasis of frequency? J. Comp. Physiol. 106, 267–300 (1976b)Google Scholar
  11. ERKERT, H.G.: Der Einfluß der Schwingungsbreite von Licht-Dunkel-Cyclen auf Phasenlage und Resynchronisation der circadianen Aktivitätsperiodik dunkelaktiver Tiere. J. Interdiscipl. Cycle Res. 7, 71–91 (1976)CrossRefGoogle Scholar
  12. FISCHER, K.: Untersuchungen zur Sonnenkompassorientierung und Laufaktivität von Smaragdeidechsen (Lacerta viridis Laur.). Z. Tierpsychol. 18, 450–470 (1961)CrossRefGoogle Scholar
  13. GWINNER, E.: Testosterone induces ‘splitting’ of circadian locomotor activity rhythms in birds. Science 185, 72–74 (1974)PubMedCrossRefGoogle Scholar
  14. HALBERG, F., HALBERG, E., MONTALBETTI, N.: Premesse e sviluppi della cronofarma-cologia. Quaderni di medicina quantitativa 8, 7–5-(1970)Google Scholar
  15. HALBERG, F., NELSON, W., CADOTTE, L.: Increased mortality in mice exposed to weekly 180° shifts of lighting regime LD 12:12 beginning at 1 year of age. Chronobiologia 2, Suppl. 1, 26 (1975)Google Scholar
  16. HALBERG, F., NELSON, W., Runge, W.J., Schmitt, O.H. et al.: Plans for orbital study of rat biorhythms. Results of interest beyond the biosatellite program. Space Life Sci. 2, 437–471 (1971)CrossRefGoogle Scholar
  17. Hayes, D.K.: Survival of the codling moth, the pink bollworm and the tobacco budworm after 90° phase-shifts at varied regular intervals throughout the life span. In: Shift Work and Health. Rentos, P.G., Shephard, R.D. (eds.). Washington: US Dept. Health, Ed. and Welfare, 1976, pp. 48–50Google Scholar
  18. HOFFMANN, K.: Die relative Wirksamkeit von Zeitgebern. Oecologia 3, 184–206 (1969)CrossRefGoogle Scholar
  19. KLEIN, K.E., BRüNER, H., HOLTMANN, H., REHME, H., STOLZE, J., STEINHOFF, W.D., WEGMANN, H.M.: Circadian rhythm of pilots’ efficiency and effects of multiple time zone travel. Aerospace Med. 41, 125–132 (1970)PubMedGoogle Scholar
  20. KLEIN, K.E., HERRMANN, R., KUKLINSKI, P., WEGMANN, H.M.: Circadian performance rhythms: Experimental studies in air operation. NATO-Conference Series (III-Human Factors) Vol. 3 (Vigilance). New York: Plenum Press, 1977, pp. 111–132Google Scholar
  21. KLEIN, K.E., WEGMANN, H.M.: The resynchronization of human circadian rhythms after transmeridian flights as a result of flight direction and mode of activity. In: Chronobiology. Scheving, L.E., Halberg, F., Pauly, J.E. (eds.). Tokyo: Igaku Ltd., 1974, pp. 564–570Google Scholar
  22. KLOTTER, K.: General properties of oscillating systems. Cold Spring Harbor Symp. Quant. Biol. 25, 185–187 (1960)PubMedGoogle Scholar
  23. LEVINE, H.: Health and work shifts. In: Shift Work and Health. RENTOS, P.G., SHEPHARD, R.D. (eds.). Washington: US Dept. Health, Ed. and Welfare, 1976, pp. 57–69Google Scholar
  24. MINORS, D.S., WATERHOUSE, J.M.: How do rhythms adjust to time shifts? J. Physiol. 265, 23 (1976)Google Scholar
  25. MOORE-EDE, M.C., SCHMELZER, W.S., KASS, D.A., HERD, J.A.: Internal organization of the circadian timing system in multicellular animals. Federation Proc. 35, 2333–2338 (1976)Google Scholar
  26. NELSON, W., HALBERG, F.: Effects of a synchronizer phase-shift on circadian rhythms in response of mice to ethanol or ouabain. Space Life Sci. 4, 249–257 (1973)PubMedCrossRefGoogle Scholar
  27. PITTENDRIGH, C.W., DAAN, S.: A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: pacemakers as clocks. J. Comp. Physiol. 106, 301–331 (1976)Google Scholar
  28. POHL, H.: Comparative aspects of circadian rhythms in homeotherms. Re-entrainment after phase shifts of the Zeitgeber. Int. J. Chronobiol. (1978, in press)Google Scholar
  29. WEVER, R.: The duration of re-entrainment of circadian rhythms after phase shifts of the Zeitgeber. J. Theoret. Biol. 13, 187–201 (1966)CrossRefGoogle Scholar
  30. WEVER, R.: Zur Zeitgeber-Stärke eines Licht-Dunkel-Wechsels für die circadiane Periodik des Menschen. Pflügers Arch. 321, 133–142 (1970)PubMedCrossRefGoogle Scholar
  31. WEVER, R.: The Circadian System of Man. Berlin-Heidelberg-New York: Springer, 1978 (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • J. Aschoff

There are no affiliations available

Personalised recommendations