Role of Iron in Bacterial Infection

  • J. J. Bullen
  • Henry J. Rogers
  • E. Griffiths
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 80)


Iron is essential for most living things. The importance of the metal lies in its remarkable capacity to engage in electron transport reactions in biological systems (Neilands, 1974). From the point of view of infection, a clear distinction must be made between the quantity of iron present in body fluids and its availability to bacteria. In the living body, iron is not freely available. The bulk of the metal is locked up in ferritin, hemosiderin, myoglobin, and in the hemoglobin in red cells (Lanzkowsky, 1976). The iron-binding proteins, transferrin and lactoferrin, which possess only a minute fraction of the total body iron, are normally only partly saturated with Fe and have an exceptionally high association constant of about 1036 for the metal. This means that the amount of free iron in equilibrium with these proteins is only about 10−8 M, which is far too low for normal bacterial growth. To obtain Fe from normal tissue, bacteria must therefore possess iron chelating agents with association constants similar to those of transferrin and lactoferrin. In injured or dead tissue the situtation may be very different. For example, the lysis of red cells can provide large amounts of Fe for those bacteria that can assimilate heme compounds.


Human Milk Chronic Granulomatous Disease Iron Metabolism Iron Compound Serum Transferrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aasa, R., Malmstrom, B.G., Saltman, P., Vanngard, J.: The specific binding of iron III and copper II to transferrin and conalbumin. Biochim. Biophys. Acta 75, 203–222 (1963)PubMedGoogle Scholar
  2. Aisen, P., Leibman, A.: The stability constants of the Fe3+ conalbumin complexes. Biochem. Biophys. Res. Commun. 30, 407–413 (1968a)PubMedGoogle Scholar
  3. Aisen, P., Leibman, A.: Citrate-mediated exchange of Fe3+ among transferrin molecules. Biochem. Biophys. Res. Commun. 32, 220–226 (1968b)PubMedGoogle Scholar
  4. Aisen, P., Leibman, A.: Lactoferrin and transferrin: A comparative study. Biochim. Biophys. Acta 257, 314–323 (1972)PubMedGoogle Scholar
  5. Aisen, P., Leibman, A.: The role of the anion-binding site of transferrin in its interaction with the reticulocyte. Biochim. Biophys. Acta 304, 797–804 (1973)PubMedGoogle Scholar
  6. Aisen, P., Aasa, R., Radfield, A.G.: The chromium, manganese and cobalt complexes of transferrin. J. Biol. Chem. 224, 4628–4633 (1969)Google Scholar
  7. Arbeter, A., Echeverri, L., Franco, D., Munson, D., Velez, H., Vitale, J.J.: Nutrition and infection. Fed. Proc. 30, 1421–1428 (1971)PubMedGoogle Scholar
  8. Awai, M., Chipman, B., Brown, E.B.: In vivo evidence for the functional heterogeneity of transferrin bound iron. I. Studies in normal rats. J. Lab. Clin. Med. 85, 769–784 (1975)Google Scholar
  9. Azari, P.R., Feeney, R.E.: The resistance of conalbumin and its iron complex to physical and chemical treatments. Arch. Biochem. Biophys. 92, 44–52 (1961)PubMedGoogle Scholar
  10. Bainton, D.F.: Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J. Cell Biol. 58, 249–264 (1973)PubMedGoogle Scholar
  11. Bainton, D.F.: Neutrophil granules. Annotation. Br. J. Haematol. 29, 17–21 (1975)Google Scholar
  12. Baker, P.J., Wilson, J.B.: Hypoferremia in mice and its application to the bioassay of endotoxin. J. Bacteriol. 90, 903–910 (1965)PubMedGoogle Scholar
  13. Balch, H.H., Kelley, P.: The pathogenesis of strangulation obstruction. Effect of haemoglobin on bactericidal capacity of human leukocytes. J. Surg. Res. 5, 262–264 (1965)PubMedGoogle Scholar
  14. Barrett-Connor, E.: Bacterial infection and sickle cell anaemia. Medicine 50, 97–112 (1971)PubMedGoogle Scholar
  15. Barry, D.M.J., Reeve, A.W.: Abstract. Symposium on Iron in Infancy. Pediatr. Soc. N.Z. Nov. 12–14, Auckland 1975, pp. 16Google Scholar
  16. Bates, G.W., Billups, C., Saltman, P.: The kinetics and mechanism of iron (III) exchange between chelates and transferrin. I. The complexes of citrate and nitrilotriacetic acid. J. Biol. Chem. 242, 2810–2815 (1967)Google Scholar
  17. Bates, G.W., Billups, C., Saltman, P.: The kinetics and mechanism of iron (III) exchange between chelates and transferrin. II. The presentation and removal with ethylenediamine- tetraacetate. J. Biol. Chem. 242, 2816–2821 (1967)PubMedGoogle Scholar
  18. Bates, G. W., Workman, E.F., Schlabach, M.R.: Does transferrin exhibit ferroxidase activity? Biochem. Biophys. Res. Commun. 50, 84–90 (1973)Google Scholar
  19. Bennett, I.L., Hook, E.W.: Infectious diseases (some aspects of salmonellosis). Annu. Rev. Med. 10, 1–20 (1959)Google Scholar
  20. Bezkorovainy, A., Grohlich, D.: The behaviour of native and reduced-alkylated human transferrin in urea and guanidine-HCl solutions. Biochim. Biophys. Acta 147, 497–510 (1967)PubMedGoogle Scholar
  21. Bezkorovainy, A., Grohlich, D.: Cyanogen bromide fragments of human serum transferrin. Biochim. Biophys. Acta 310, 365–375 (1973)PubMedGoogle Scholar
  22. Bezkorovainy, A., Zschoke, R.H.: Structure and function of transferrins. I. Physical, chemical and iron-binding properties. Arzneim. Forsch. 24, 476–485 (1974)Google Scholar
  23. Bishop, J.A., Schanbacher, F.L., Ferguson, L.C., Smith, K.L.: In vitro growth inhibition of mastitis causing coliform bacteria by bovine apo-lactoferrin and reversal of inhibition by citrate and high concentrations of apo-lactoferrin. Infect. Immun. 14, 911–918 (1976)PubMedGoogle Scholar
  24. Bornside, G.H., Cohn, I.: Haemoglobin as a bacterial virulence enhancing factor in fluids produced in strangulation intestinal obstruction. Am. Surg. 34, 63–67 (1968)PubMedGoogle Scholar
  25. Bornside, G.H., Bouis, P.J., Cohn, J.: Haemoglobin and Escherichia coli, a lethal intraperitoneal combination. J. Bacteriol. 95, 1567–1571 (1968)PubMedGoogle Scholar
  26. Brummelkamp, W.H.: Considerations on hyperbaric oxygen therapy at three atmospheres absolute for Clostridial infections type welchii. Ann. N.Y. Acad. Sci. 117, 688–699 (1965)PubMedGoogle Scholar
  27. Brune, K., Leffell, M.S., Spitznagel, J.K.: Microbicidal activity of peroxidaseless chicken hetrophile leukocytes. Infect. Immun. 5, 283–287 (1972)PubMedGoogle Scholar
  28. Buchanan, W.M.: Shock in Bantu siderosis. Am. J. Clin. Pathol. 55, 401–406 (1971)PubMedGoogle Scholar
  29. Bullen, C.L., Tearle, P.V.: Bifidobacteria in the intestinal tract of infants: an in vivo study. J. Med. Microbiol. 9, 325–333, 335–344 (1976)Google Scholar
  30. Bullen, C.L., Willis, A.T.: Resistance of the breast-fed infant to gastroenteritis. Br. Med. J. 3, 338–343 (1971)PubMedGoogle Scholar
  31. Bullen, J.J.: Microbial Toxins. Ajl, S. (ed.). New York: Academic Press 1970, Vol. I, pp. 233–276Google Scholar
  32. Bullen, J.J., Cushnie, G.H.: Experimental gas gangrene. The effect of antiserum on the growth of Clostridium welchii type A. J. Pathol. 84, 177–192 (1962)Google Scholar
  33. Bullen, J.J., Cushnie, G.H.: The failure of antitoxin to protect guinea pigs against intraperitoneal infection with Clostridium welchii type A. J. Pathol. 86, 345–360 (1963)Google Scholar
  34. Bullen, J.J., Rogers, H.J.: Bacterial iron metabolism and immunity to Pasteurella septica and Escherichia coll Nature 224, 380–382 (1969)Google Scholar
  35. Bullen, J.J., Wallis, S.N.: Reversal of the bactericidal effect of polymorphs by a ferritin- antibody complex. FEMS Lett. 1, 117–120 (1977)Google Scholar
  36. Bullen, J.J., Dobson, A., Wilson, A.B.: Bacteriostatic effects of specific antiserum on Clostridium welchii type A. The role of Eh and pH of the medium. J. Gen. Microbiol. 35, 175–182 (1964)PubMedGoogle Scholar
  37. Bullen, J.J., Cushnie, G.H., Stoner, H.B.: Oxygen uptake by Clostridium welchii type A. Its possible role in experimental infections in passively immunised animals. Br. J. Exp. Pathol. 47, 488–506 (1966)PubMedGoogle Scholar
  38. Bullen, J.J., Cushnie, G.H., Rogers, H.J.: The abolition of the protective effect of Clostridium welchii type A antiserum by ferric iron. Immunology 12, 303–312 (1967)PubMedGoogle Scholar
  39. Bullen, J.J., Wilson, A.B., Cushnie, G H., Rogers, H.J.: The abolition of the protective effect of Pasteurella septica antiserum by iron compounds. Immunology 14, 889–898 (1968a)PubMedGoogle Scholar
  40. Bullen, J.J., Leigh, L.C., Rogers, H.J.: The effect of iron compounds on the virulence of Escherichia coli for guinea pigs. Immunology 15, 581–588 (1968b)PubMedGoogle Scholar
  41. Bullen, J.J., Rogers, H.J., Lewin, J.E.: The bacteriostatic effect of serum on Pasteurella septica and its aboliton by iron compounds. Immunology 20, 391–406 (1971)PubMedGoogle Scholar
  42. Bullen, J. J., Rogers, H.J., Leigh, L.: Iron binding proteins in milk and resistance to Escherichia coli infection in infants. Br. Med. J. 1, 69–75 (1972)PubMedGoogle Scholar
  43. Bullen, J.J., Ward, C.G., Wallis, S.N.: Virulence and the role of iron in Pseudomonas aeruginosa infection. Infect. Immun. 10, 443–450 (1974)PubMedGoogle Scholar
  44. Bullen, J.J., Wallis, S.N., Griffiths, E.: The effect of antipolymorphonuclear leukocyte serum on Pseudomonas aeruginosa infection in rabbits. Immunology 30, 603–610 (1976)PubMedGoogle Scholar
  45. Burrows, T. W.: Virulence of Pasteurella pestis and immunity to plague. Ergeb. Mikrobiol. 37, 59–113 (1963)Google Scholar
  46. Calver, G.A., Kenny, C.P., Lavergne, G.: Iron as a replacement for mucin in the establishment of meningococcal infection in mice. Can. J. Microbiol. 22, 832–838 (1976)PubMedGoogle Scholar
  47. Cannon, J.C., Chasteen, N.D.: Nonequivalence of the metal binding sites in vanadyl labeled human serum transferrin. Biochemistry 14, 4573–4577 (1975)PubMedGoogle Scholar
  48. Caroline, L., Taschdjian, C.L., Kozinn, P.J., Schade, A.L.: Reversal of serum fungistasis by addition of iron. J. Invest. Dermatol. 42, 415–419 (1964)PubMedGoogle Scholar
  49. Caroline, L., Rosner, F., Kozinn, P.J.: Elevated serum iron, low unbound transferrin, and candidiasis in acute leukemia. Blood 34, 441–451 (1969 a)PubMedGoogle Scholar
  50. Caroline, L., Kozinn, P.J., Feldman, F., Steifel, F.H., Lichtman, H.: Infection and iron overload in thalassemia. Ann. N.Y. Acad. Sci. 165, 148–155 (1969b)PubMedGoogle Scholar
  51. Cartwright, G.E., Lauritsen, A., Humphries, S., Jones, P.J., Merrill, I.M., Wintrobe, M.M.: The anemia of infection. II. The experimental production of hypoferraemia and anaemia in dogs. J. Clin. Invest. 25, 81–86 (1946)Google Scholar
  52. Cartwright, G.E., Gubler, C.J., Wintrobe, M.M.: The anemia of infection. XII. The effect of temperature and coloidal thorium dioxide on the plasma iron and plasma copper of dogs. J. Biol. Chem. 184, 579–587 (1950)PubMedGoogle Scholar
  53. Chaberek, S., Martell, A.E.: Organic Sequestering Agents. New York: John Wiley, 1959, p. 446Google Scholar
  54. Chandra, R.K.: Reduced bactericidal capacity of polymorphs in iron deficiency. Arch. Dis. Child. 48, 864–866 (1973)PubMedGoogle Scholar
  55. Coughlan, M.P.: The role of iron in microbial metabolism. Sci. Prog. 59, 1–23 (1971)Google Scholar
  56. Crichton, R.D. (ed.): Proteins of Iron Storage and Transport in Biochemistry and Medicine. Amsterdam: North Holland Publishing 1975Google Scholar
  57. Cuadra, M.: Salmonellosis complications in human bartonellosis. Tex. Rep. Biol. Med. 14, 97–113 (1956)PubMedGoogle Scholar
  58. Davis, J.H., Yull, A.B.: A toxic factor in abdominal injury. II. The role of the red cell component. J. Trauma. 4, 84–89 (1964)PubMedGoogle Scholar
  59. Delachaume-Salem, E., Sarles, H.: Evolution en fonction de l’age de la secretion pancreatique humaine normale. Biol. Gastroenterol. (Paris) 2, 135–146 (1970)Google Scholar
  60. Donovan, J.W., Ross, K.D.: Nonequivalence of the metal binding sites of conalbumin. Carolimetric and spectrophotometric studies of aluminium binding. J. Biol. Chem. 250, 6022–6025 (1975 a)PubMedGoogle Scholar
  61. Donovan, J.W., Ross, K.D.: Iron binding to conalbumin. Calorimetric evidence for two distinct species with one bound iron atom. J. Biol. Chem. 250, 6026–6031 (1975 b)PubMedGoogle Scholar
  62. Egyed, A.: The significance of transferrin-bound bicarbonate in the uptake of iron by reticulocytes. Biochim. Biophys. Acta 304, 805–813 (1973)PubMedGoogle Scholar
  63. Elin, R.J., Wolff, S.M.: The role of iron in non specific resistance to infection induced by endotoxin. J. Immunol. 112, 737–754 (1974)PubMedGoogle Scholar
  64. Feeney, R.E., Allison, R.G.: Evolutionary Biochemistry of Proteins. New York: Wiley- Interscience 1969Google Scholar
  65. Fielding, J., Speyer, B.E.: Iron transport intermediates in human reticulocytes and the membrane binding site of iron-transferrin. Biochim. Biophys. Acta 363, 387–396 (1974)PubMedGoogle Scholar
  66. Filler, R.M., Sleeman, H.: Pathogenesis of peritonitis. I. The effect of Escherichia coli and haemoglobin on peritoneal absorption. Surgery 61, 385–392 (1967)PubMedGoogle Scholar
  67. Fitzgerald, S.P., Rogers, H.J.: Bacteriostatic effect of serum on Escherichia coli 0111: Elucidation of the antibody binding site. Proc. Soc. Gen. Microbiol. 3, 110 (1976)Google Scholar
  68. Fletcher, J.: The effect of iron and transferrin on the killing of Escherichia coli in fresh serum. Immunology 20, 493–500 (1971)PubMedGoogle Scholar
  69. Fletcher, J., Goldstein, E.: The effect of parenteral iron preparations on experimental pyelonephritis. Br. J. Exp. Pathol. 57, 280–285 (1970)Google Scholar
  70. Fletcher, J., Huehns, E.R.: Function of transferrin. Nature 218, 1211–1214 (1968)PubMedGoogle Scholar
  71. Ford, A., Hayhoe, J.P.V.: An investigation of alternatives to hog gastric mucin as virulence enhancing agents in the cholera vaccine potency assay. J. Biol. Stand. 4, 353–366 (1976)PubMedGoogle Scholar
  72. Ford-Hutchinson, A.W., Perkins, D.J.: The binding of scandium ions to transferrin in vivo and in vitro. Eur. J. Biochem. 27, 55–59 (1971)Google Scholar
  73. Forsberg, C.M., Bullen, J.J.: The effect of passage and iron on the virulence of Pseudomonas aeruginosa. J. Clin. Pathol. 25, 65–68 (1972)PubMedGoogle Scholar
  74. Fusillo, M.H., Smith, J.C., Reednick, J.A.: Iron and the mystique of mucin. Abst. 74th Ann. Mtg. American Soc. Microbiol. (M44) 1974, p. 73Google Scholar
  75. Gaber, B.P., Aisen, P.: Is divalent iron bound to transferrin? Biochim. Biophys. Acta 227, 228–233 (1970)Google Scholar
  76. Giles, C., Sangster, G., Smith, J.: Epidemic gastro-enteritis of infants in Aberdeen during 1947. Arch. Dis. Child. 24, 45–53 (1949)PubMedGoogle Scholar
  77. Gindrat, J.J., Gothefors, L., Hanson, L.A., Winberg, J.: Antibodies in human milk against E. coli of the serogroups most commonly found in neonatal infections. Acta Paediatr. Scand. 61, 587–590 (1972)Google Scholar
  78. Gladstone, G.P., Walton, E.: The effect of iron and haematin on the killing of staphylococci by rabbit polymorphs. Br. J. Exp. Pathol. 52, 452–464 (1971)PubMedGoogle Scholar
  79. Griffiths, E.: Mechanism of action of specific antiserum on Pasteurella septica. Selective inhibition of net macromolecular synthesis and its reversal by iron compounds. Eur. J. Biochem. 23, 69–76 (1971)PubMedGoogle Scholar
  80. Griffiths, E.: Abnormal phenylalanyl-tRNA found in serum inhibited Escherichia coli, strain 0111. FEBS Lett. 25, 159–164 (1972)PubMedGoogle Scholar
  81. Griffiths, E.: Rapid degradation of ribosomal RNA in Pasteurella septica induced by specific antiserum. Biochim. Biophys. Acta 340, 400–412 (1974a)PubMedGoogle Scholar
  82. Griffiths, E.: Metabolically controlled killing of Pasteurella septica by antibody and complement. Biochim. Biophys. Acta 362, 598–602 (1974b)PubMedGoogle Scholar
  83. Griffiths, E.: Effect of pH and haem compounds on the killing of Pasteurella septica by specific antiserum. J. Gen. Microbiol. 88, 345–354 (1975)PubMedGoogle Scholar
  84. Griffiths, E., Humphreys, J.: Changes in aminoacyl-tRNAs associated with the inhibition of Escherichia coli 0111 by bovine colostrum. Proc. Soc. Gen. Microbiol. 3, 61 (1975)Google Scholar
  85. Griffiths, E., Humphreys, J.: Alterations in Escherichia coli tRNAs-A possible relationship with pathogenicity. Proc. Soc. Gen. Microbiol. 4, 11 (1976)Google Scholar
  86. Griffiths, E., Humphreys, J.: Bacteriostatic effect of human milk and bovine colostrum on Escherichia coli. Importance of bicarbonate. Infect. Immun. 15, 396–401 (1977)PubMedGoogle Scholar
  87. Hahn, D.: Functional behaviour of transferrin. Eur. J. Biochem. 34, 311–316 (1973)PubMedGoogle Scholar
  88. Hanson, L.A., Winberg, J.: Breast milk and defence against infection in the newborn. Arch. Dis. Child. 47, 845–848 (1972)PubMedGoogle Scholar
  89. Harmon, R.J., Schanbacher, F.L., Ferguson, L.C., Smith, K.L.: Changes in lactoferrin, immunoglobulin G, bovine serum albumin and a-lactalbumin during acute experimental and natural coliform mastitis in cows. Infect. Immun. 13, 533–542 (1976)PubMedGoogle Scholar
  90. Harris, D.C., Gray, G.A., Aisen, P.: 13C Nuclear magnetic resonance study of the spatial relation of the metal — and anion — binding sites of human transferrin. J. Biol. Chem. 249, 5261–5264 (1974)PubMedGoogle Scholar
  91. Hemmaplardh, D., Morgan, E.H.: Transferrin uptake and release by reticulocytes treated with proteolytic enzymes and neuraminidase. Biochim. Biophys. Acta 426, 385–398 (1976)PubMedGoogle Scholar
  92. Henderson, S.G.: The gastrointestinal tract in the healthy newborn infant. Annu. J. Roentgen. Rad. Ther. Nuc. Med. 48, 302–335 (1942)Google Scholar
  93. Hendrickse, R.G.: Nutrition and infection. Ciba Foundation Study Group No. 31, 98–111 (1967)Google Scholar
  94. Hosain, F., Mclntyre, P.A., Poulose, K, Stern, H.S., Wagner, W.N.: Binding of trace amounts of ionic indium-113m to plasma transferrin. Clin. Chim. Acta 24, 69–75 (1969)PubMedGoogle Scholar
  95. Jackson, S., Burrows, T.W.: The virulence-enhancing effect of iron on non pigmented mutants of virulent strains oí Pasteur ella pestis. Br. J. Expo. Pathol. 37, 577–583 (1956)Google Scholar
  96. Jacobs, A., Worwood, M. (eds.): Iron in Biochemistry and Medicine. London: Academic Press 1974Google Scholar
  97. Jandl, J.H., Katz, J.H.: The plasma-to-cell cycle of transferrin. J. Clin. Invest. 42, 314–326 (1963)PubMedGoogle Scholar
  98. Jensen, M.S., Bainton, D.F.: Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear leukocyte. J. Cell Biol. 56, 379–388 (1973)PubMedGoogle Scholar
  99. Johanson, B.: Isolation of an iron-containing red protein from human milk. Acta Chem. Scand. 14, 510–511 (1960)Google Scholar
  100. Jones, N.L.: Irreversible shock in haemochromatosis. Lancet 1962/I, 569–572Google Scholar
  101. Jones, R.G., Dyster, R.E.: The role of polymorphonuclear leukocytes in protecting mice vaccinated against Pseudomonas aeruginosa infections. Br. J. Exp. Pathol. 54, 416–421 (1973)PubMedGoogle Scholar
  102. Joynson, D.H.M., Jacobs, A., Walker, D.M., Dolby, A.E.: Defect of cell mediated immunity in patients with iron deficient anaemia. Lancet 1972/II, 1058–1059Google Scholar
  103. Juarez, H., Skjold, A.C., Hedgecoth, C.: Precursor relationship of phenylalanine transfer ribonucleic acid from Escherichia coli treated with chloramphenicol or starved for iron, methionine or cysteine. J. Bacteriol. 121, 44–54 (1975)PubMedGoogle Scholar
  104. Kampschmidt, B.F., Upchurch, H.: Lowering of plasma iron concentration in the rat with leukocytic extracts. Am. J. Physiol. 216, 1287–1291 (1969)PubMedGoogle Scholar
  105. Kaye, D., Gill, F.A., Hook, E.W.: Factors influencing host resistance to salmonella infections: The effects of haemolysis and erythrophagocytosis. Am. J. Med. Sci. 254, 205–215 (1967)PubMedGoogle Scholar
  106. King, R.D., Khan, H.A., Foye, J.C., Greenberg, J.H., Jones, H.E.: Transferrin, iron and dermatophytes. I. Serum dermatophyte inhibiting component definitely identified as unsaturated transferrin. J. Lab. Clin. Med. 86, 204–212 (1975)Google Scholar
  107. Klebanoff, S.J.: Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. In: Neutrophil Physiology and Pathology. Humbert, J.R., Meischer, P.A., Jaff E.R. (eds.). New York: Grune and Stratton 1975, pp. 127–152Google Scholar
  108. Kochan, I., Golden, C.A., Bukovic, J.A.: Mechanism of tuberculostasis in mammalian serum. II. Induction of serum tuberculostasis in guinea pigs. J. Bacteriol. 100, 64–70 (1969)PubMedGoogle Scholar
  109. Kohler, E.M.: Protection of pigs against neonatal enteric colibacillosis with colostrum and milk from orally vaccinated sows. Am. J. Vet. Res. 35, 331–338 (1974)PubMedGoogle Scholar
  110. Komatsu, S.K., Feeney, R.E.: Role of tyrosyl groups in metal binding properties of transferrins. Biochemistry 6, 1136–1141 (1967)PubMedGoogle Scholar
  111. Lane, R.S.: DEAE-cellulose chromatography of human transferrin. The effect of increasing iron saturation and copper (II) binding. Biochim. Biophys. Acta 243, 193–202 (1971)PubMedGoogle Scholar
  112. Lankford, C.E.: Bacterial assimilation of iron. CRC Crit. Rev. Microbiol. 2, 273–331 (1973)Google Scholar
  113. Lanzkowsky, P.: Iron metabolism in the newborn infant. Clinics in endocrinology and metabolism 5, 149–173 (1976)PubMedGoogle Scholar
  114. Laskowski, M., Laskowski, M.: Cystalline trypsin inhibitor from colostrum. J. Biol. Chem. 190, 563–573 (1951)PubMedGoogle Scholar
  115. Leffell, M.S., Spitznagel, J.K.: Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes. Infect. Immun. 6, 761–765 (1972)PubMedGoogle Scholar
  116. Lehrer, R.I., Cline, M.J.: Leukocyte myeloperoxidase deficiency and disseminated Candidiasis: the role of myeloperoxidase in resistance to Candida infection. J. Clin. Invest. 48, 1478–1488 (1969)PubMedGoogle Scholar
  117. Line, W.F., Grohlich, D., Bezkorovainy, A.: The effect of chemical modification on the iron-binding properties of human transferrin. Biochemistry 6, 3393–3402 (1967)PubMedGoogle Scholar
  118. Littauer, U.Z., Inouye, H.: Regulation of tRNA. Annu. Rev. Biochem. 42, 439–470 (1973)PubMedGoogle Scholar
  119. Luk, C.K.: Study of the nature of the metal-binding sites and estimate of the distance between metal binding sites in transferrin using trivalent lanthanide ions as fluorescent probes. Biochemistry 10, 2838–2843 (1971)Google Scholar
  120. McClelland, D.B.L., van Furth, R.: Antimicrobial factors in the exudates of skin windows in human subjects. Clin. Exp. Immunol. 25, 442–448 (1976)PubMedGoogle Scholar
  121. McDougall, L.G., Anderson, R., McNab, G.M., Katz, J.: The immune response in iron deficient children: Impaired cellular defence mechanisms with altered humoral components. J. Pediatr. 86, 833–843 (1975)Google Scholar
  122. McFarlane, H., Reddy, S., Adcock, K.J., Adeshina, H., Cooke, A.R., Akene, J.: Immunity, transferrin and survival in Kwashiorkor. Br. Med. J. 4, 268–270 (1970)Google Scholar
  123. MacLennan, J.E.: The histotoxic clostridial infections of man. Bacteriol. Rev. 26, 177–274 (1962)PubMedGoogle Scholar
  124. McNeish, A.S., Fleming, J., Turner, P., Evans, N.: Mucosal adherence of human enteropathogenic Escherichia coli. Lancet 1975 II, 946–948Google Scholar
  125. Masawe, A.E.J., Muindi, J.M., Swai, G.B.R.: Infections in iron deficiency and other types of anaemia in the tropics. Lancet 1974/II, 314–317Google Scholar
  126. Mason, S.: Some aspects of gastric function in the newborn. Arch. Dis. Child. 37, 387–391 (1962)PubMedGoogle Scholar
  127. Masson, P.: La Lactoferrine. Brussels: Editions Arscia S.A. 1970Google Scholar
  128. Masson, P.L., Heremans, J.F.: Studies on lactoferrin, the iron binding protein of secretions. Protides of Biological Fluids, 14th Colloq. Bruges, 1966, pp. 115–124Google Scholar
  129. Masson, P.L., Heremans, J.F.: Metal combining properties of human lactoferrin (red milk protein). I. The involvement of bicarbonate in the reaction. Eur. J. Biochem. 6, 579–584 (1968)Google Scholar
  130. Masson, P.L., Heremans, J.F.: Lactoferrin in milk from different species. Comp. Biochem. Physiol. [B] 39, 119–129 (1971)Google Scholar
  131. Masson, P.L., Heremans, J.F., Schonne, E., Crabbe, P.A.: New data on lactoferrin; the iron binding protein of secretions. Protides of Biological Fluids, 16th Colloq. Bruges, 1968, pp. 633–638Google Scholar
  132. Masson, P.L., Heremans, J.F., Schonne, E.: Lactoferrin, an iron binding protein in neutrophilic leukocytes. J. Exp. Med. 130, 643–658 (1969)PubMedGoogle Scholar
  133. Mata, L.J., Kronmal, R.A., Garcia, B., Butler, W., Urrutia, J.J., Murillo, S.: Breast feeding, weaning and a diarrhoeal syndrome in a Guatemalan Indian village. Ciba Symposium 42 (new series), “Acute Diarrhoea in Childhood”, Amsterdam: Elsevier 1976, pp. 311–330Google Scholar
  134. Mazurier, J., Spik, G., Montreuil, J.: Isolation and characterisation of the cyanogen bromide fragments from human lactotransferrin. FEBS Lett. 48, 262–265 (1974)PubMedGoogle Scholar
  135. Miles, A.A., Khimji, P.L.: Enterobacterial chelators of iron: their occurrence, detection and relation to pathogenicity. J. Med. Microbiol. 8, 477–490 (1975)PubMedGoogle Scholar
  136. Morgan, E.H.: Transferrin and transferrin iron. In: Iron in Biochemistry and Medicine. Jacobs, A., Worwood, M. (eds.). London-New York: Academic Press 1974Google Scholar
  137. Morgan, E.H., Baker, E.: The effect of metabolic inhibitors on transferrin and iron uptake and transferrin release from reticulocytes. Biochim. Biophys. Acta 184, 442–454 (1969)PubMedGoogle Scholar
  138. Murray, M.J., Murray, A.B., Murray, N.J., Murray, M.B.: Refeeding — malaria and hyperferraemia. Lancet 1975 I, 653–654Google Scholar
  139. Nagy, L.K., Mackenzie, T., Bharucha, Z.: In vitro studies on the antimicrobial effects of colostrum and milk from vaccinated and unvaccinated pigs. Res. Vet. Sci. 21, 132–140 (1976a)PubMedGoogle Scholar
  140. Nagy, L.K., Bhogal, B.S., Mackenzie, T.: The effect of colostrum or post colibacillosis on the adhesion of Escherichia coli to the small intestine of the pig. Res. Vet. Sci. 21, 303–308 (1976b)PubMedGoogle Scholar
  141. Neilands, J.B.: Evolution of iron binding centers. Struct. Bonding (Berlin) 11, 145–170 (1972)Google Scholar
  142. Neilands, J.B.: Iron and its role in microbial physiology. In: Microbial Iron Metabolism. Neilands, J.B. (ed.). New York: Academic Press 1974, pp. 4–34Google Scholar
  143. Nishimura, S.: Minor components in transfer RNA. Their characterization, location and function. Prog. Nucleic Acid Res. Mol. Biol. 12, 50–85 (1972)Google Scholar
  144. Ohnishi, T., Schleyer, H., Chance, B.: Studies on non-heme iron proteins and the piericidin A binding site of submitochondrial particles from Candida utilis cells grown in media of varying iron concentrations. Biochem. Biophys. Res. Commun. 36, 487–493 (1969)PubMedGoogle Scholar
  145. Padgett, G.A., Hirsch, J.G.: Lysozyme: its absence in tears and leukocytes of cattle. Aust. J. Exp. Biol. Med. Sci. 45, 569–570 (1967)PubMedGoogle Scholar
  146. Payne, S.M., Finkelstein, R.A.: Pathogenesis and immunology of experimental gonococcal infection: role of iron in virulence. Infect. Immun. 12, 1313–1318 (1975)PubMedGoogle Scholar
  147. Peaker, M., Linzeil, J.L.: Citrate in milk: a harbinger of lactogenesis. Nature 253, 464 (1975)PubMedGoogle Scholar
  148. Pekarek, R.S., Bostian, K.A., Bartelloni, P.J., Calia, F.M., Beisel, R.W.: The effects of Francisella tularensis infection on iron metabolism in man. Am. J. Med. Sci. 258, 14–25 (1969)PubMedGoogle Scholar
  149. Phillips, J.L.: Specific binding of zinc transferrin to human lymphocytes. Biochem. Biophys. Res. Commun. 72, 634–639 (1976)PubMedGoogle Scholar
  150. Polk, H.C., Miles, A.A.: Enhancement of bacterial infection by ferric iron. Kinetics, mechanisms and surgical significance. Surgery 70, 71–77 (1971)PubMedGoogle Scholar
  151. Price, E.M., Gibson, J.F.: Reinterpretation of bicarbonate-free ferric transferrin E.P.R. spectra. Biochem. Biophys. Res. Commun. 46, 646–651 (1972 a)PubMedGoogle Scholar
  152. Price, E.M., Gibson, J.F.: Electron paramagnetic resonance evidence for a distinction between the two iron-binding sites in transferrin and conalbumin. J. Biol. Chem. 247, 8031–8035 (1972b)PubMedGoogle Scholar
  153. Querinjean, P., Masson, P.L., Heremans, J.F.: Molecular weight, single chain structure and amino acid composition of human lactoferrin. Eur. J. Biochem. 20, 420–425 (1971)PubMedGoogle Scholar
  154. Reiter, B., Brock, J.H., Steel, E.D.: Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. II. The bacteriostatic effect of lactoferrin on a serum susceptible and serum resistance strain of E. coli. Immunology 28, 83–95 (1975)Google Scholar
  155. Rogers, H.J.: Bacteriostatic effect of horse sera and serum fractions on Clostridium welchii type A, and the abolition of bacteriostasis by iron salts. Immunology 12, 285–301 (1967)PubMedGoogle Scholar
  156. Rogers, H.J.: Iron binding catechols and virulence in Escherichia coli. Infect. Immun. 7, 445–456 (1973)PubMedGoogle Scholar
  157. Rogers, H.J.: Ferric iron and the antibacterial effect of horse 7S antibodies to Escherichia coli Olli. Immunology 30, 425–433 (1976)PubMedGoogle Scholar
  158. Rogers, H.J., Bullen, J.J., Cushnie, G.H.: Iron compounds and resistance to infection. Further experiments with Clostridium welchii type A in vivo and in vitro. Immunology 19, 521–538 (1970)PubMedGoogle Scholar
  159. Rogers, H.J., Synge, C., Kimber, B., Bayley, P.M.: Production of eneterochelin by Escherichia coli 0111. Biochim. Biophys. Acta 497, 548–557 (1977)PubMedGoogle Scholar
  160. Rosenberg, A.H., Gefter, M.L.: An iron dependent modification of several transfer RNA species in Escherichia coli. J. Mol. Biol. 46, 581–584 (1969)PubMedGoogle Scholar
  161. Rosenberg, H., Young, I.G.: Iron transport in the enteric bacteria. In: Microbial Iron Metabolism. Neilands, J.B. (ed.). New York: Academic Press 1974, pp. 67–82Google Scholar
  162. Rumke, Ph., Visser, D., Kwa, H.G., Hart, A.A.M.: Radio-immunoassay of lactoferrin in blood plasma of breast cancer patients, lactating and normal women. Folia Med. Neerl. 14, 156–168 (1971)Google Scholar
  163. Schade, A.L.: Significance of serum iron for growth, biological characteristics and metabolism of Staphylococcus aureus. Biochem. Z. 338, 140–148 (1963)PubMedGoogle Scholar
  164. Schade, A.L., Caroline, L.: Raw hen egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli and Saccharomyces cerevisiae. Science 100, 14–15 (1944)PubMedGoogle Scholar
  165. Schade, A.L., Caroline, L.: An iron binding component in human blood plasma. Science 104, 340–341 (1946)Google Scholar
  166. Schlabach, M.R., Bates, G.W.: The synergistic binding of anions and Fe3+ by transferrin: implications for the interlocking site hypothesis. J. Biol. Chem. 250, 2182–2188 (1975)PubMedGoogle Scholar
  167. Segal, A.W., Peters, T.J.: Characterisation of the enzyme defect in chronic granulomatous disease. Lancet 1976, 1363–1365Google Scholar
  168. Smith, G.H., Schulman, J., Morgentau, J.E.: Iron metabolism in infants and children. Adv. Pediatr. 5, 195–231 (1952)PubMedGoogle Scholar
  169. Speyer, B.E., Fielding, J.: Chromatographic fractionation of human reticulocytes after uptake of doubly labelled (59Fe, 1251) transferrin. Biochim. Biophys. Acta 332, 192–200 (1974)Google Scholar
  170. Spik, C., Montreuil, J.: Etudes comparatives de la structure de la transferrine et de la lactotransferrine humaines. “Finger printing” des hydrolysates proteasique des deux glycoproteides. C.R. Acad. Sci. (Paris) 160, 94–98 (1966)Google Scholar
  171. Spitznagel, J.K., Cooper, M.R., McCall, A.E., Dechatelet, L.R., Welsh, I.R.H.: Selective deficiency of granules associated with lysozyme and lactoferrin in human polymorphs (PMN) with reduced microbicidal capacity. J. Clin. Invest. 51, Abst. No. 305, 93a (1972)Google Scholar
  172. Stossel, T.P.: Phagocytosis (Part II). N. Engl. J. Med. 290, 774–780 (1974)Google Scholar
  173. Surgenor, D.M., Koechlin, B.A., Strong, L.E.: Chemical, clinical and immunological studies on the products of human plasma fractionation. XXXVII. The metal-combining globulin of human plasma. J. Clin. Invest. 28, 73–78 (1949)Google Scholar
  174. Svirsky-Gross, S.: Pathogenic strains of coli (0111) among prematures and the use of human milk in controlling the outbreak of diarrhoea. Ann. Paediatr. 190, 109–115 (1958)PubMedGoogle Scholar
  175. Sword, C.P.: Mechanism of pathogenesis in Listeria monocytogenes infection. I. Influence of iron. J. Bacteriol. 92, 536–542 (1966)PubMedGoogle Scholar
  176. Tagesson, C., Stendahl, O.: Influence of the cell surface lipopolysaccharide structure of Salmonella typhimurium on resistance to intracellular bactericidal systems. Acta Pathol. Microbiol. Scand. [B] 81, 473–480 (1973)Google Scholar
  177. Tan, A.T., Woodworth, R.C.: Ultraviolet difference spectral studies of conalbumin complexes with transition metal ions. Biochemistry 8, 3711–3716 (1969)PubMedGoogle Scholar
  178. Tassovatz, B., Kotsitch, A.: Le lait de femme et son action de protection contre les infections intestionales chez le nouveaune. Ann. Pediatr. 8, 285–288 (1961)Google Scholar
  179. Taylor, D.M.: Interactions between transuranium elements and the components of cells and tissues. Health Phys. 22, 575–581 (1972)PubMedGoogle Scholar
  180. Teuwissen, B., Masson, P.L., Osinski, P., Heremans, J.F.: Metal-combining properties of human lactoferrin. The possible involvement of tyrosyl residues in the binding sites. Spectrophotometric titration. Eur. J. Biochem. 31, 239–245 (1972)PubMedGoogle Scholar
  181. Theodore, T.S., Schade, A.L.: Carbohydrate metabolism of iron-rich and iron-poor Staphy-lococcus aureus. J. Gen. Microbiol. 40, 385–395 (1965)PubMedGoogle Scholar
  182. Tomasi, T.B., Bienenstock, J.: Secretory immunoglobulins. Adv. Immunol. 9, 2–96 (1969)Google Scholar
  183. Van Snick, J.L., Masson, P.L., Heremans, J.F.: The involvement of bicarbonate in the binding of iron by transferrin. Biochim. Biophys. Acta 322, 231–233 (1973)PubMedGoogle Scholar
  184. Van Snick, J.L., Masson, P.L., Heremans, J.F.: The involvement of lactoferrin in the hyposideremia of acute inflammation. J. Exp. Med. 140, 1068–1084 (1974)PubMedGoogle Scholar
  185. Wake, A., Morita, H., Yamamoto, M.: The effect of an iron drug on host response to experimental plague infection. Jpn. J. Med. Sci. Biol. 25, 75–84 (1972)PubMedGoogle Scholar
  186. Wake, A., Yamamoto, M., Morita, H.: Double effects of an iron drug in induction of mouse plague caused by an attenuated strain. Jpn. J. Med. Sci. Biol. 27, 229–239 (1974)PubMedGoogle Scholar
  187. Walton, E., Gladstone, G.P.: Factors affecting the susceptibility of staphylococci to killing by the cationic proteins from rabbit polymorphonuclear leucocytes: the effects of alteration of cellular energetics and of various iron compounds. Br. J. Exp. Pathol. 57, 560–570 (1976)PubMedGoogle Scholar
  188. Waring, W.S., Werkman, C.H.: Iron deficiency in bacterial metabolism. Arch. Biochem. 4, 75–87 (1944)Google Scholar
  189. Wettstein, F.O., Stent, G.S.: Physiologically induced changes in the property of phenylalanine tRNA in Escherichia coli. J. Mol. Biol. 38, 25–40 (1968)PubMedGoogle Scholar
  190. Wenn, R. V., Williams, J.: The isoelectric fractionation of hen’s egg ovotransferrin. Biochem. J. 108, 69–74 (1968)PubMedGoogle Scholar
  191. Wheby, M.S., Umpierre, G.: Effect of transferrin saturation on iron adsorption in man. N. Engl. J. Med. 271, 1391–1395 (1964)PubMedGoogle Scholar
  192. Williams, J.: Iron-binding fragments from the carboxyl-terminal region of hen ovotransferrin. Biochem. J. 149, 237–244 (1975)PubMedGoogle Scholar
  193. Woodworth, R.C., Morallee, K.G., Williams, R.J.P.: Perturbations of the proton magnetic resonance spectra of conalbumin and siderophilin as a result of binding Ga3+ or Fe3+. Biochemistry 9, 838–842 (1970)Google Scholar
  194. Workman, E.F., Bates, G.W.: Membrane and cytoplasmic iron transport in the rabbit reticulocyte. In: Proteins of Iron Storage and Transport in Biochemistry and Medicine. Amsterdam-Oxford: North Holland Publishing 1975, pp. 155–160Google Scholar
  195. Zschocke, R.H., Bezkorovainy, A.: Structure and function of transferrins. II. Transferrin and iron metabolism. Arzneim.-Forsch. 24, 726–737 (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • J. J. Bullen
  • Henry J. Rogers
  • E. Griffiths
    • 1
  1. 1.National Institute for Medical ResearchMill Hill, LondonGreat Britain

Personalised recommendations