Current Concepts on the Evolution of the Neurosecretory Neuron

  • B. Scharrer


Neurosecretory neurons can be defined as nerve cells that engage in secretory activity to a degree which greatly surpasses that of conventional neurons, and which is comparable to that of gland cells. The capacity of these specialized neuronal elements for controlling effector cells by means of neurohormonal signalling and the absence, at least in classic neurosecretory neurons, of contacts with postsynaptic cells represent significant deviations from the norm as formulated by the neuron doctrine. What is the rationale for the phenomenon of neurosecretion, and what is its place within the spectrum of neurochemical mediation?


Neurosecretory Granule Peptidergic Neuron Neurosecretory Neuron Hypothalamic Hormone Hypothalamic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acher, R.: Chemistry of the neurohypophysial hormones: an example of molecular evolution. Handbook of Physiology. Sect. 7. Endocrinology. Greep, R.O., Astwood, E.B. (eds.). 1974, Vol. IV, part 1, pp. 119–130Google Scholar
  2. Barker, J.L., Gainer, H.: Peptide regulation of bursting pacemaker activity in a molluscan neurosecretory cell. Science 184, 1371–1373 (1974)PubMedCrossRefGoogle Scholar
  3. Brown, M., Vale, W.: Central nervous system effects of hypothalamic peptides. Endocrinology 96, 1333–1336 (1975)PubMedCrossRefGoogle Scholar
  4. Brownstein, M.J., Palkovits, M., Saavedra, J.M., Kizer, J.S.: Distribution of hypothalamic hormones and neurotransmitters within the diencephalon. In: Frontiers in Neuroendocrinology. Martini, L., Ganong, W.F. (eds.). New York: Raven Press 1976, Vol. IV, pp. 1–23Google Scholar
  5. Burnett, A.L., Diehl, N.A.: The nervous system of Hydra, III. The initiation of sexuality with special reference to the nervous system. J. Exp. Zool. 157, 237–249 (1964)PubMedCrossRefGoogle Scholar
  6. Capra, J.D., Walter, R.: Primary structure and evolution of neurophysins. Ann. N.Y. Acad. Sci. 248, 397–407 (1975)PubMedCrossRefGoogle Scholar
  7. Carraway, R., Leeman, S.E.: The amino acid sequence of a hypothalamic peptide, neurotensin. J. Biol. Chem. 250, 1907–1911 (1975)PubMedGoogle Scholar
  8. Constantinidis, J., Greissbühler, F., Gaillard, J.M., Hovaguimian, T., Tissot, R.: Enhancement of cerebral noradrenaline turnover by thyrotropinreleasing hormone: evidence by fluorescence histochemistry. Experientia 30, 1182–1183 (1974)PubMedCrossRefGoogle Scholar
  9. Davis, L.E.: Ultrastructural studies of the development of nerves in Hydra, Am. Zool. 14, 551–573 (1974)Google Scholar
  10. Fernlund, P., Josefsson, L.: Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177, 173–175 (1972)PubMedCrossRefGoogle Scholar
  11. Grasso, M., Benazzi, M.: Genetic and physiologic control of fissioning and sexuality in planarians. J. Embryol. Exp. Morphol. 30, 317–328 (1973)PubMedGoogle Scholar
  12. Grimm-Jørgensen, Y., Mckelvy, J.F., Jackson, I.M.D.: Immunoreactive thyrotrophin releasing factor in gastropod circumoesophageal ganglia. Nature 254, 420 (1975)CrossRefGoogle Scholar
  13. Guillemin, R., Ling, N., Burgus, R.: Endorphines, peptides, d’origine hypothalamique et neurohypophysaire à activité morphinomimétique. Isolement et structure moléculaire de 1’α-endorphine. C.R. Acad. Sci., D (Paris) 282, 783–785 (1976)Google Scholar
  14. Hauenschild, C: Endokrine Beeinflussung der geschlechtlichen Entwicklung einiger Polychaeten. Fortschr. Zool. 22, 75–92 (1974)PubMedGoogle Scholar
  15. Heller, H.: Molecular aspects in comparative endocrinology. Gen. Comp. Endocrinol. 22, 315–332 (1974)PubMedCrossRefGoogle Scholar
  16. Horst, W.D., Spirt, N.: A possible mechanism for the anti-depressant activity of thyrotropin releasing hormone. Life Sci. 15, 1073–1082 (1974)PubMedCrossRefGoogle Scholar
  17. Josefsson, L.: Structure and function of crustacean chromatophorotropins. Gen. Comp. Endocrinol. 25, 199–202 (1975)PubMedCrossRefGoogle Scholar
  18. Lentz, T.L.: Primitive nervous systems. New Haven-London: Yale University Press 1968Google Scholar
  19. Mccann, S.M., Moss, R.L.: Putative neurotransmitters involved in discharging gonadotropin-releasing neurohormones and the action of LH-releasing hormone on the CNS. Life Sci. 16, 833–852 (1975)PubMedCrossRefGoogle Scholar
  20. Martini, L., Ganong, W.F. (eds.): Frontiers in Neuroendocrinology. New York: Raven Press 1976, Vol. IVGoogle Scholar
  21. Pavans De Ceccatty, M.: Ultrastructures et rapports des cellules mésenchymateuses de type nerveux de l’Eponge Tethya lyncurium Lmk. Ann. Sci. Nat. Zool. (12) 8, 577–614 (1966) Pavans De Ceccatty, M.: The origin of the integrative systems: a change in view derived from research on coelenterates and sponges. Perspect. Biol. Med. 17, 379–390 (1974)Google Scholar
  22. Pilgrim, C.: Histochemical differentiation of hypothalamic areas. Prog. Brain Res. 41, 97–110 (1974)PubMedCrossRefGoogle Scholar
  23. Plotnikoff, N.P., White, W.F., Kastin, A.J., Schally, A.V.: Gonadotropin releasing hormone (GnRH): neuropharmacological studies. Life Sci. 17, 1685–1692 (1975)PubMedCrossRefGoogle Scholar
  24. Prange, A.J., Wilson, I.C., Breese, G.R., Lipton, M.A.: Behavioral effects of hypothalamic releasing hormones in animals and men. Prog. Brain Res. 42, 1–9 (1975)PubMedCrossRefGoogle Scholar
  25. Scharrer, B.: General principles of neuroendocrine communication. In: The Neurosciences: Second Study Program. Schmitt, F.O. (ed.) New York: The Rockefeller Univ. Pr. 1970, pp. 519–529Google Scholar
  26. Scharrer, B.: Neuroendocrine communication (neurohormonal, neurohumoral, and intermediate). Prog. Brain Res. 38, 7–18 (1972)PubMedCrossRefGoogle Scholar
  27. Scharrer, B.: The spectrum of neuroendocrine communication. In: Recent Studies of Hypothalamic Function. Int. Symp. Calgary, 1973. Basle: Karger 1974, pp. 8–16Google Scholar
  28. Scharrer, B.: Neurosecretion-comparative and evolutionary aspects. In: Prog. Brain Res. 45, 125-137 (1976)Google Scholar
  29. Sterba, G.: Ascending neurosecretory pathways of the peptidergic type. In: Neurosecretion — the Final Neuroendocrine Pathway. Knowles, F., Vollrath, L. (eds.). VI. Int. Symp. on Neurosecretion, London, 1973. Berlin-Heidelberg-New York: Springer-Verlag 1974, pp. 38-47Google Scholar
  30. Vincent, J.D., Arnauld, E.: Vasopressin as a neurotransmitter in the central nervous system: some evidence from the supraoptic neurosecretory system. Prog. Brain Res. 42, 57–66 (1975)PubMedCrossRefGoogle Scholar
  31. Wallis, M.: The molecular evolution of pituitary hormones. Biol. Rev. 50, 35–98 (1975)PubMedCrossRefGoogle Scholar
  32. Walter, R. (ed.): Neurophysins: carriers of peptide hormones. Ann. N.Y. Acad. Sci. 248 (1975)Google Scholar
  33. Watkins, W.B.: Immunohistochemical demonstration of neurophysin in the hypothalamoneurohypophysial system. Int. Rev. Cytol. 41, 241–284 (1975)PubMedCrossRefGoogle Scholar
  34. Wied, D. de, Wimersma Greidanus, T.B. van, Bohus, B., Urban, I., Gispen, W.H.: Vasopressin and memory consolidation. Prog. Brain Res. 45, 181–194 (1976)PubMedCrossRefGoogle Scholar
  35. Witter, A.: The in vivo fate of brain oligopeptides. Biochem. Pharmacol. 24, 2025–2030 (1975)PubMedCrossRefGoogle Scholar
  36. Zimmerman, E.A.: Localization of hypothalamic hormones by immunocytochemical techniques. In: Frontiers in Neuroendocrinology. Martini, G., Ganong, W.F. (eds.). New York: Raven Press 1976, Vol. IV, pp. 25–62Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • B. Scharrer
    • 1
  1. 1.Department of AnatomyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations