Skip to main content

Interrelationship of Purine and Pyrimidine Metabolism

  • Chapter
Uric Acid

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 51))

Abstract

Purines and pyrimidines are found in equal amounts in nucleic acids, and the number far exceeds that present as free nucleotides and related low-molecular-weight compounds. Such being the case, cellular demands for synthesis of purines and pyrimidines would be almost equal. In fact, whole-body rates of pyrimidine synthesis de novo in man as estimated by Weissman et al. (1962) are within the same order of magnitude with estimates of total purine production (Seegmiller et al., 1961). The question of specific control mechanisms that coordinate the synthesis of purines and pyrimidines is thus raised. Although a definitive answer awaits additional information, there is evidence of a mechanism by which purine and pyrimidine syntheses are coordinated through the intracellular level of 5-phosphoribosyl 1-pyrophosphate. Other possible mechanisms include those where key enzymes of the metabolism of purines or pyrimidines are regulated reciprocally by pyrimidine or purine derivatives. This type of regulation has been observed for certain enzyme reactions, although the physiologic significance remains unclear in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, P. M.: A glutamine- and N-acetyl-L-glutamate-dependent carbamyl phosphate synthetase activity in the teleost Micropterus salmoidesComp. Biochem. Physiol. 54B, 261–263 (1976)

    Google Scholar 

  • Anderson, P.M., Marvin, S.V.: Effect of ornithine, IMP, and UMP on carbamyl phosphate synthetase from Escherichia coliBiochem. biophys. Res. Commun. 32, 928–934 (1968)

    PubMed  CAS  Google Scholar 

  • Anderson, P.M., Meister, A.: Control of Escherichia colicarbamyl phosphate synthetase by purine and pyrimidine nucleotides. Biochemistry 5, 3164–3169 (1966)

    PubMed  CAS  Google Scholar 

  • Aoki, T., Oya, H., Mori, M., Tatibana, M.: Glutamine-dependent carbamoyl phosphate synthetase in Ascarisovary and its regulatory properties. Proc. Jap. Acad. 51, 733–736 (1975)

    CAS  Google Scholar 

  • Appel, S.H.: Purification and kinetic properties of brain orotidine 5′-phosphate decarboxylase. J. biol. Chem. 243, 3924–3929 (1968)

    PubMed  CAS  Google Scholar 

  • Aronow, L.: Reversal of adenine toxicity by pyrimidine nucleosides. Biochim. biophys. Acta (Amst.)47, 184–185(1961)

    CAS  Google Scholar 

  • Atkinson, D.E., Fall, L.: Adenosine triphosphate conservation in biosynthetic regulation. Escherichia coliphosphoribosylpyrophosphate synthase. J. biol. Chem. 242, 3241–3242 (1967)

    PubMed  CAS  Google Scholar 

  • Atkinson, D.E., Walton, G.M.: Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J. biol. Chem. 242, 3239–3241 (1967)

    PubMed  CAS  Google Scholar 

  • Baer, H.P., Drummond, G.I., Duncan, E.L.: Formation and deamination of adenosine by cardiac muscle enzymes. Molec. Pharmacol. 2, 67–76 (1966)

    CAS  Google Scholar 

  • Bagnara, A.S., Finch, L.R.: The effects of bases and nucleosides on the intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coliEurop. J. Biochem. 41, 421–430(1974)

    PubMed  CAS  Google Scholar 

  • Beardmore, T.D., Cashman, J.S., Kelley, W.N.: Mechanism of allopurinol-mediated increase in enzyme activity in man. J. clin. Invest. 51, 1823–1832 (1972)

    PubMed  CAS  Google Scholar 

  • Beardmore, T.D., Kelley, W.N.: Mechanism of allopurinol-mediated inhibition of pyrimidine* biosynthesis. J. Lab. clin. Med. 78, 696–704 (1971)

    PubMed  CAS  Google Scholar 

  • Becker, M.A., Argubright, K.F., Fox, R.M., Seegmiller, J.E.: Oxipurinol-associated inhibition of pyrimidine synthesis in human lymphoblasts. Molec. Pharmacol. 10, 657–668 (1974)

    CAS  Google Scholar 

  • Becker, M.A., Kostel, P.J., Meyer, L.J., Seegmiller, J.E.: Human phosphoribosylpyrophosphate synthetase: increased enzyme specific activity in a family with gout and excessive purine synthesis. Proc. nat. Acad. Sci. (Wash.) 70, 2749–2752 (1973)

    CAS  Google Scholar 

  • Berne, R.M.: Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Amer. J. Physiol. 204, 317–322 (1963)

    PubMed  CAS  Google Scholar 

  • Blair, D.G.R., Potter, V.R.: Inhibition of orotidylic acid decarboxylase by uridine 5′-phosphate. J. biol. Chem. 236, 2503–2506 (1961)

    CAS  Google Scholar 

  • Blakley, R.L., Vitols, E.: The control of nucleotide biosynthesis. Ann. Rev. Biochem. 37, 201–224 (1968)

    PubMed  CAS  Google Scholar 

  • Bodansky, O., Schwartz, M. K.: 5′-Nucleotidase. Advanc. clin. Chem. 11, 277–328 (1968)

    CAS  Google Scholar 

  • Breslow, R.E., Goldsby, R.A.: Isolation and characterization of thymidine transport mutants of Chinese hamster cells. Exp. Cell Res. 55, 339–346 (1969)

    PubMed  CAS  Google Scholar 

  • Brooke, M.S., Magasanik, B.: The metabolism of purines in Aerobacteraerogenes: a study of purineless mutants. J. Bacteriol. 68, 727–733 (1954)

    PubMed  CAS  Google Scholar 

  • Brown, G. K., Fox, R.M., O’Sullivan, W.J.: Alteration of quaternary structural behaviour of an hepatic orotate phosphoribosyltransferase-orotidine 5′-phosphate decarboxylase complex in rats following allopurinol therapy. Biochem. Pharmacol. 21, 2469–2477 (1972)

    PubMed  CAS  Google Scholar 

  • Brown, G.K., Fox, R.M., O’Sullivan, W. J.: Interconversion of different molecular weight forms of human erythrocyte orotidylate decarboxylase. J. biol. Chem. 250, 7352–7358 (1975)

    PubMed  CAS  Google Scholar 

  • Brown, N.C., Reichard, P.: Ribonucleoside diphosphate reductase. Formation of active and inactive complexes of proteins B1 and B2. J. molec. Biol. 46, 25–38 (1969a)

    PubMed  CAS  Google Scholar 

  • Brown, N.C., Reichard, P.: Role of effector binding in allosteric control of ribonucleoside diphosphate reductase. J. molec. Biol. 46, 39–55 (1969 b)

    PubMed  CAS  Google Scholar 

  • Caskey, C.T., Ashton, D.M., Wyngaarden, J.B.: The enzymology of feedback inhibition of glu-tamine phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides. J. biol. Chem. 239, 2570–2579 (1964)

    PubMed  CAS  Google Scholar 

  • Center, M.S., Behal, F. J.: Calf intestinal 5′-nucleotidase. Arch. Biochem. biophys. 114, 414–421 (1966)

    CAS  Google Scholar 

  • Chambers, D.A., Martin, Jr., D.W., Weinstein, Y.: The effect of cyclic nucleotides on purine biosynthesis and the induction of PRPP synthetase during lymphocyte activation. Cell 3, 375 – 380(1974)

    PubMed  CAS  Google Scholar 

  • Changeux, J.-P., Gerhart, J.C, Schachman, H.K.: Allosteric interactions in aspartate transcarba-mylase. I. Binding of specific ligands to the native enzyme and its isolated subunits. Biochemistry?, 531–538 (1968)

    Google Scholar 

  • Clifford, A.J., Riumallo, J.A., Baliga, B.S., Munro, H.N., Brown, P.R.: Liver nucleotide metabolism in relation to amino acid supply. Biochim. biophys. Acta (Amst.) 277, 443–458 (1972)

    CAS  Google Scholar 

  • Creasey, W. A., Handschumacher, R.E.: Purification and properties of orotidylate decarboxylases from yeast and rat liver. J. biol. Chem. 236, 2058–2063 (1961)

    PubMed  CAS  Google Scholar 

  • Creasey, W.A., Hankin, L., Handschumacher, R.E.: Fatty livers induced by orotic acid. I. Accumulation and metabolism of lipids. J. biol. Chem. 236, 2064–2070 (1961)

    PubMed  CAS  Google Scholar 

  • Davis, R.H.: Channeling in Neurosporametabolism. In: Vogel, H.J., Lampen, J.O., Bryson, V. (Eds.): Organizational Biosynthesis, pp. 303–322. New York: Academic Press 1967

    Google Scholar 

  • Dissing, J., Knudsen, B.: Adenosine-deaminase deficiency and combined immunodeficiency syndrome. Lancet 1972II, 1316

    Google Scholar 

  • Euler, L.H., von, Rubin, R.J., Handschumacher, R.E.: Fatty livers induced by orotic acid. II. Changes in nucleotide metabolism. J. biol. Chem. 238, 2464–2469 (1963)

    Google Scholar 

  • Fallon, H. J., Frei, E., III, Block, J., Seegmiller, J.E.: The uricosuria and orotic aciduria induced by 6-azauridine. J. clin. Invest. 40, 1906–1914 (1961)

    PubMed  CAS  Google Scholar 

  • Ferris, G.M., Clark, J.B.: The control of nucleic acid and nicotinamide nucleotide synthesis in regenerating rat liver. Biochem. J. 128, 869–877 (1972)

    PubMed  CAS  Google Scholar 

  • Fox, I.H., Kelley, W.N.: Phosphoribosylpyrophosphate in man: biochemical and clinical significance. Ann. intern. Med. 74, 424–433 (1971 a)

    PubMed  CAS  Google Scholar 

  • Fox, I.H., Kelley, W.N.: Human phosphoribosylpyrophosphate synthetase. Distribution, purification, and properties. J. biol. Chem. 246, 5739–5748 (1971 b)

    PubMed  CAS  Google Scholar 

  • Fox, R.M., Royse-Smith, D., O’Sullivan, W.J.: Orotidinuria induced by allopurinol. Science 168, 861–862(1970)

    PubMed  CAS  Google Scholar 

  • Fox, R.M., Wood, M.H., O’Sullivan, W.J.: Studies on the coordinate activity and lability of orotidylate phosphoribosyltransferase and decarboxylase in human erythrocytes, and the effects of allopurinol administration. J. clin. Invest. 50, 1050–1060 (1971)

    PubMed  CAS  Google Scholar 

  • Fritson, P.: Nucleotidase activities in the soluble fraction of rat liver homogenate. Partial purification and properties of a 5′-nucleotidase with pH optimum 6.3. Biochim. biophys. Acta (Amst.) 178, 534–541 (1969)

    Google Scholar 

  • Fyfe, J.A., Miller, R.L., Krenitsky, T.A.: Kinetic properties and inhibition of orotidine 5′-phos-phate decarboxylase. Effects of some allopurinol metabolites on the enzyme. J. biol. Chem. 248, 3801–3809 (1973)

    PubMed  CAS  Google Scholar 

  • Gerhart, J.C., Pardee, A.B.: The enzymology of control by feedback inhibition. J. biol. Chem. 237, 891–896(1962)

    PubMed  CAS  Google Scholar 

  • Giblett, E.R., Anderson, J.E., Cohen, F., Pollara, B., Meuwissen, H.J.: Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 1972II, 1067–1069

    Google Scholar 

  • Gotto, A.M., Belkhode, M.L., Touster, O.: Stimulatory effects of inosine and deoxyinosine on the incorporation of uracil-2–14C, 5-fluorouracil-2–14C, and 5-bromouracil-2–14C into nucleic acids by Ehrlich ascites tumor cells in vitro. Cancer Res. 29, 807–811 (1969)

    PubMed  CAS  Google Scholar 

  • Green, H., Chan, T.-S.: Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science 182, 836–837 (1973)

    PubMed  CAS  Google Scholar 

  • Green, C.D., Martin, D. W., Jr.: A direct, stimulating effect of cyclic GMP on purified phosphori-bosyl pyrophosphate synthetase and its antagonism by cyclic AMP. Cell 2, 241–245 (1974)

    PubMed  CAS  Google Scholar 

  • Grobner, W., Kelley, W.N.: Effect of allopurinol and its metabolic derivatives on the configuration of human orotate phosphoribosyltransferase and orotidine 5′-phosphate decarboxylase. Biochem. Pharmacol. 24, 379–384 (1975)

    PubMed  CAS  Google Scholar 

  • Giilen, S., Smith, P.C., Tremblay, G.C.: Evidence for the control of pyrimidine biosynthesis in tissue minces by purines. Biochem. biophys. Res. Commun. 56, 934–939 (1974)

    Google Scholar 

  • Hager, S.E., Jones, M.E.: Initial steps in pyrimidine synthesis in Ehrlich ascites carcinoma in vitro. II. The synthesis of carbamyl phosphate by a soluble, glutamine-dependent carbamyl phosphate synthetase. J. biol. Chem. 242, 5667–5673 (1967 a)

    PubMed  CAS  Google Scholar 

  • Hager, S.E., Jones, M.E.: A glutamine-dependent enzyme for the synthesis of carbamyl phosphate for pyrimidine biosynthesis in fetal rat liver. J. biol. Chem. 242, 5674–5680 (1967 b)

    PubMed  CAS  Google Scholar 

  • Hakala, M.T., Taylor, E.: The ability of purine and thymine derivatives and of glycine to support the growth of mammalian cells in culture. J. biol. Chem. 234, 126–128 (1959)

    PubMed  CAS  Google Scholar 

  • Handschumacher, R.E.: Orotidylic acid decarboxylase: inhibition studies with azauridine 5′-phosphate. J. biol. Chem. 235, 2917–2919 (1960)

    PubMed  CAS  Google Scholar 

  • Handschumacher, R.E., Creasey, W.A., Jaffe, J.J., Pasternak, C.A., Hankin, L.: Biochemical and nutritional studies on the induction of fatty livers by dietary orotic acid. Proc. nat. Acad. Sci. (Wash.) 46, 178–186(1960)

    CAS  Google Scholar 

  • Hare, J.D.: Quantitative aspects of thymidine uptake into the acid-soluble pool of normal and polyoma-transformed hamster cells. Cancer Res. 30, 684–691 (1970)

    PubMed  CAS  Google Scholar 

  • Henderson, J.F., Khoo, M.K.Y.: Availability of 5-phosphoribosyl 1-pyrophosphate for ribonucleotide synthesis in Ehrlich ascites tumor cells in vitro. J. biol. Chem. 240, 2358–2362 (1965a).

    PubMed  CAS  Google Scholar 

  • Henderson, J.F., Khoo, M.K.Y.: Synthesis of 5-phosphoribosyl 1-pyrophosphate from ribonu-cleosides in Ehrlich ascites tumor cells in vitro. J. biol. Chem. 240, 2363–2366 (1965 b)

    PubMed  CAS  Google Scholar 

  • Henderson, J.F., Paterson, A.R.P.: Nucleotide Metabolism. An Introduction. New York: Academic Press 1973

    Google Scholar 

  • Hershko, A., Razin, A., Mager, J.: Regulation of the synthesis of 5-phosphoribosyl-1-pyrophosphate in intact red blood cells and in cell-free preparations. Biochim. biophys. Acta (Amst.) 184, 64–76(1969)

    CAS  Google Scholar 

  • Hill, D.L., Bennett, L.L., Jr.: Purification and properties of 5-phosphoribosyl pyrophosphate amidotransferase from adenocarcinoma 755 cells. Biochemistry 8, 122–130 (1969)

    PubMed  CAS  Google Scholar 

  • Hisata, T.: An accurate method for estimating 5-phosphoribosyl 1-pyrophosphate in animal tissues with the use of acid extraction. Anal. Biochem. 68, 448–457 (1975)

    PubMed  CAS  Google Scholar 

  • Hochstadt-Ozer, J., Stadtman, E.R.: The regulation of purine utilization in bacteria. II. Adenine phosphoribosyltransferase in isolated membrane preparations and its role in transport of adenine across the membrane. J. biol. Chem. 246, 5304–5311 (1971)

    PubMed  CAS  Google Scholar 

  • Holmes, E.W., McDonald, J.A., McCord, J.M., Wyngaarden, J.R., Kelley, W.N.: Human gluta-mine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties. J. biol. Chem. 248, 144–150 (1973)

    PubMed  CAS  Google Scholar 

  • Holmes, E.W., Pehlke, D.M., Kelley, W.N.: Human IMP dehydrogenase. Kinetics and regulatory properties. Biochim. biophys. Acta (Amst.) 364, 209–217 (1974)

    CAS  Google Scholar 

  • Hosono, R., Kuno, S.: Mechanism of inhibition of bacterial growth by adenine. J. Biochem. (Tokyo) 75, 215–220(1974)

    CAS  Google Scholar 

  • Hurlbert, R.B., Kammen, H.O.: Formation of cytidine nucleotides from uridine nucleotides by soluble mammalian enzymes: requirements for glutamine and guanosine nucleotides. J. biol. Chem. 235, 443–449 (1960)

    CAS  Google Scholar 

  • Inagaki, A., Tatibana, M.: Control of pyrimidine biosynthesis in mammalian tissues. III. Multiple forms of aspartate transcarbamoylase of mouse spleen. Biochim. biophys. Acta (Amst.) 220, 491–502(1970)

    CAS  Google Scholar 

  • Ishii, K., Green, H.: Lethality of adenosine for cultured mammalian cells by interference with pyrimidine biosynthesis. J. Cell Sci. 13, 429–439 (1973)

    PubMed  CAS  Google Scholar 

  • Ito, K., Nakanishi, S., Terada, M., Tatibana, M.: Control of pyrimidine biosynthesis in mammalian tissues. II. Glutamine-utilizing carbamoyl phosphate synthetase of various experimental tumors: distribution, purification and characterization. Biochim. biophys. Acta (Amst.) 220, 477–490 (1970)

    CAS  Google Scholar 

  • Ito, K., Uchino, H.: Control of pyrimidine biosynthesis in human lymphocytes. Inhibitory effect of guanine and guanosine on induction of enzymes for pyrimidine biosynthesis de novo in phytohemagglutinin-stimulated lymphocytes. J. biol. Chem. 251, 1427–1430 (1976)

    PubMed  CAS  Google Scholar 

  • Itoh, R., Mitsui, A., Tsushima, K.: 5′-Nucleotidase of chicken liver. Biochim. biophys. Acta (Amst.) 146, 151–159(1967)

    CAS  Google Scholar 

  • Itoh, R., Mitsui, A., Tsushima, K.: Properties of 5′-nucleotidase from hepatic tissue of higher animals. J. Biochem. (Tokyo) 63, 165–169 (1968)

    CAS  Google Scholar 

  • Itho, R., Tsushima, K.: Changes in 5′-nucleotidase activity in chick liver during development and dietary treatment. Biochim. biophys. Acta (Amst.) 273, 229–235 (1972)

    Google Scholar 

  • Ipata, P.L.: Sheep brain 5′-nucleotidase. Some enzymic properties and allosteric inhibition by nucleoside triphosphates. Biochemistry 7, 507–515 (1968)

    PubMed  CAS  Google Scholar 

  • Jones, M.E.: Regulation of pyrimidine and arginine biosynthesis in mammals. Advanc. Enzyme Regul. 9, 19–49 (1971)

    Google Scholar 

  • Kavipurapu, P.R., Jones, M.E.: Purification, size, and properties of the complex of orotate phos-phoribosyltransferase: orotidylate decarboxylase from mouse Ehrlich ascites carcinoma. J. biol. Chem. 251, 5589–5599 (1976)

    PubMed  CAS  Google Scholar 

  • Kelley, W.N.: Purine and pyrimidine metabolism of cells in culture. In: Rothblat, G.H., Cristofalo, V. J. (Eds.): Growth, Nutrition, and Metabolism of Cells in Culture, Vol. 1, pp. 211–256. New York: Academic Press 1972

    Google Scholar 

  • Kelley, W.N., Beardmore, T.D.: Allopurinol: alteration in pyrimidine metabolism in man. Science 169, 388–390 (1970)

    PubMed  CAS  Google Scholar 

  • Kelley, W.N., Beardmore, T.D., Fox, I.H., Meade, J.C.: Effect of allopurinol and oxipurinol on pyrimidine synthesis in cultured human fibroblasts. Biochem. Pharmacol. 20, 1471–1478 (1971)

    CAS  Google Scholar 

  • Kelley, W.N., Fox, I.H., Wyngaarden, J.B.: Regulation of purine biosynthesis in cultured human cells. I. Effects of orotic acid. Biochim. biophys. Acta (Amst.) 215, 512–516 (1970)

    CAS  Google Scholar 

  • Kent, R.J., Lin, R.-L., Sallach, H.J., Cohen, P.P.: Reversible dissociation of a carbamoyl phosphate synthase-aspartate transcarbamoylase-dihydroorotase complex from ovarian eggs of Rana catesbeianaEffect of uridine triphosphate and other modifiers. Proc. nat. Acad. Sci. (Wash.) 72, 1712–1716 (1975)

    CAS  Google Scholar 

  • Kessel, D., Shurin, S.B.: Transport of two non-metabolized nucleosides, deoxycytidine and cyto-sine arabinoside, in a sub-line of the L1210 murine leukemia. Biochim. biophys. Acta (Amst.) 163, 179–187(1968)

    CAS  Google Scholar 

  • Klein, W.: Über Kartoffel-Nucleotidase. I. Reinigung und Isolierung des Fermentes. Z. physiol. Chem. 307, 247–253 (1957)

    CAS  Google Scholar 

  • Krooth, R.S.: Properties of diploid cell strains developed from patients with an inherited abnormality of uridine biosynthesis. Cold Spr. Harb. Symp. quant. Biol. 29, 189–212 (1964)

    CAS  Google Scholar 

  • Lacroute, F., Piérard, A., Grenson, M., Wiame, J.M.: The biosynthesis of carbamyl phosphate in Saccaromyces cerevisiaeJ. gen. Microbiol. 40, 127–142 (1965)

    PubMed  CAS  Google Scholar 

  • Lalanne, M., Henderson, J.F.: Effects of hormones and drugs on phosphoribosyl pyrophosphate concentrations in mouse liver. Canad. J. Biochem. 53, 394–399 (1975)

    CAS  Google Scholar 

  • Levine, R.L., Hoogenraad, N.J., Kretchmer, N.: Regulation of activity of carbamoyl phosphate synthetase from mouse spleen. Biochemistry 10, 3694–3699 (1971)

    PubMed  CAS  Google Scholar 

  • Li, C.-C., Hochstadt, J.: Transport mechanisms in isolated plasma membranes. Nucleoside processing by membrane vesicles from mouse fibroblast cells grown in defined medium. J. biol. Chem. 251, 1175–1180(1976)

    PubMed  CAS  Google Scholar 

  • Long, C.W., Pardee, A.B.: Cytidine triphosphate synthetase of Escherichia coliB. I. Purification and kinetics. J. biol. Chem. 242, 4715–4721 (1967)

    PubMed  CAS  Google Scholar 

  • Lue, P.F., Kaplan, J.G.: Metabolic compartmentation at the molecular level: the function of a multienzyme aggregate in the pyrimidine pathway of yeast. Biochim. biophys. Acta (Amst.) 220, 365–372 (1970)

    CAS  Google Scholar 

  • McFall, E., Magasanik, B.: The control of purine biosynthesis in cultured mammalian cells. J. biol. Chem. 235, 2103–2108 (1960)

    CAS  Google Scholar 

  • Moore, E.C., Hurlbert, R.B.: Regulation of mammalian deosyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J. biol. Chem. 241, 4802–4809 (1966)

    PubMed  CAS  Google Scholar 

  • Moore, E.C., Reichard, P.: Enzymatic synthesis of deoxyribonucleotides. VI. The cytidine diphosphate reductase system from Novikoff hepatoma. J. biol. Chem. 239, 3453–3456 (1964)

    PubMed  CAS  Google Scholar 

  • Mori, M., Ishida, H., Tatibana, M.: Aggregation states and catalytic properties of the multien-zyme complex catalyzing the initial steps of pyrimidine biosynthesis in rat liver. Biochemistry 14, 2622–2630(1975)

    PubMed  CAS  Google Scholar 

  • Mori, M., Tatibana, M.: Glutamine-dependent carbamoyl phosphate synthetase: polyamines inhibit the activity and modify the activating effect of 5-phosphoribosyl 1-pyrophosphate. Biochem. biophys. Res. Commun. 67, 287–293 (1975 a)

    PubMed  CAS  Google Scholar 

  • Mori, M., Tatibana, M.: Purification of homogeneous glutamine-dependent carbamyl phosphate synthetase from ascites hepatoma cells as a complex with aspartate transcarbamylase and dihydroorotase. J. Biochem. (Tokyo) 78, 239–242 (1975 b)

    CAS  Google Scholar 

  • Moved, H.S.: Inhibition of the biosynthesis of the pyrimidine portion of thiamine by adenosine. J. Bacteriol. 88, 1024–1029 (1964)

    Google Scholar 

  • Muirhead, K. M., Bishop, S.H.: Purification of adenylosuccinate synthetase from rabbit skeletal muscle. J. biol. Chem. 249, 459–464 (1974)

    PubMed  CAS  Google Scholar 

  • Murray, A.W.: Some properties of adenosine kinase from Ehrlich ascites-tumour cells. Biochem. J. 106, 549–555 (1968)

    PubMed  CAS  Google Scholar 

  • Nierlich, D.P., Magasanik, B.: Regulation of purine ribonucleotide synthesis by end product inhibition. The effect of adenine and guanine ribonucleotides on the 5′-phosphor ibo-sylpyrophosphate amidotransferase of Aerobacter aerogenesJ. biol. Chem. 240, 358–365 (1965)

    PubMed  CAS  Google Scholar 

  • O’Donovan, G.A., Neuhard, J.: Pyrimidine metabolism in microorganisms. Bacteriol. Rev. 34, 278–343 (1970)

    PubMed  Google Scholar 

  • Oliver, J.M., Paterson, A.R.P.: Nucleoside transport. I. A mediated process in human erythrocytes. Canad. J. Biochem. 49, 262–270 (1971)

    CAS  Google Scholar 

  • O’Neal, D., Naylor, A.W.: Purine and pyrimidine nucleotide inhibition of carbamyl phosphate synthetase from pea seedlings. Biochem. biophys. Res. Commun. 31, 322–327 (1968)

    PubMed  Google Scholar 

  • Ord, M.G., Stocken, L.A.: Uptake of orotate and thymidine by normal and regenerating rat livers. Biochem. J. 132, 47–54 (1973)

    PubMed  CAS  Google Scholar 

  • Orengo, A.: Regulation of enzymic activity by metabolites. I. Uridine-cytidine kinase of Novikoff ascites rat tumor. J. biol. Chem. 244, 2204–2209 (1969)

    PubMed  CAS  Google Scholar 

  • Paglia, D.E., Valentine, W.N.: Characteristics of a pyrimidine-specific 5′-nucleotidase in human erythrocytes. J. biol. Chem. 250, 7973–7979 (1975)

    PubMed  CAS  Google Scholar 

  • Pasternak, C.A., Handschumacher, R.E.: The biochemical activity of 6-azauridine: interference with pyrimidine metabolism in transplantable mouse tumors. J. biol. Chem. 234, 2992 – 2997 (1959)

    PubMed  CAS  Google Scholar 

  • Pausch, J., Wilkening, J., Nowack, J., Decker, K.: Control of pyrimidine biosynthesis in the perfused liver. Feedback inhibition of glutamine-dependent carbamoyl phosphate synthetase. Europ. J. Biochem. 53, 349–356 (1975)

    PubMed  CAS  Google Scholar 

  • Pierard, A.: Control of the activity of Escherichia colicarbamoyl phosphate synthetase by antagonistic allosteric effectors. Science 154, 1572–1573 (1966)

    PubMed  CAS  Google Scholar 

  • Pierard, A., Glansdorff, N., Mergeay, M., Wiame, J.M.: Control of the biosynthesis of carbamoyl phosphate in Escherichia coliJ. molec. Biol. 14, 23–36 (1965)

    PubMed  CAS  Google Scholar 

  • Pierard, A., Wiame, J.M.: Regulation and mutation affecting a glutamine dependent formation of carbamyl phosphate in Escherichia collBiochem. biophys. Res. Commun. 15, 76–81 (1964)

    PubMed  CAS  Google Scholar 

  • Pinsky, L., Krooth, R. S.: Studies on the control of pyrimidine biosynthesis in human diploid cell strains, I. Effect of 6-azauridine on cellular phenotype. Proc. nat. Acad. Sci. (Wash.) 57, 925–932 (1967)

    CAS  Google Scholar 

  • Planet, G., Fox, I.H.: Inhibition of phosphoribosylpyrophosphate synthesis by purine nucleosides in human erythrocytes. J. biol. Chem. 251, 5839–5844 (1976)

    PubMed  CAS  Google Scholar 

  • Quinlan, D.C., Hochstadt, J.: Group translocation of the ribose moiety of inosine by vesicles of plasma membrane from 3T3 cells transformed by Simian virus 40. J. biol. Chem. 251, 344 – 354 (1976)

    PubMed  CAS  Google Scholar 

  • Rajalakshmi, S., Handschumacher, R. E.: Control of purine biosynthesis de novo by orotic acid in vivo and in vitro. Biochim. biophys. Acta (Amst.) 155, 317–325 (1968)

    CAS  Google Scholar 

  • Rajalakshmi, S., Sarma, D.S.R., Sarma, P.S.: Studies on “orotic acid fatty liver”. Biochem. J. 80, 375–378 (1961)

    PubMed  CAS  Google Scholar 

  • Reichard, P.: The Biosynthesis of Deoxyribose. Ciba Lectures in Microbial Biochemistry. New York: John Wiley & Sons 1967

    Google Scholar 

  • Reichard, P.: Control of deoxyribonucleotide synthesis in vitro and in vivo. Advanc. Enzyme Regul. 10, 3–16 (1972)

    CAS  Google Scholar 

  • Remy, C.N., Love, S.H.: Induction of adenosine deaminase in Escherichia coliJ. Bacteriol. 96, 76–85 (1968)

    PubMed  CAS  Google Scholar 

  • Reyes, P., Guganig, M.E.: Studies on a pyrimidine phosphoribosyltransferase from murine leukemia P1534J. Partial purification, substrate specificity, and evidence for its existence as a bifunctional complex with orotidine 5′-phosphate decarboxylase. J. biol. Chem. 250, 5097 – 5108(1975)

    PubMed  CAS  Google Scholar 

  • Rosenbloom, F.M., Henderson, J.F., Caldwell, I.C., Kelley, W.N., Seegmiller, J.E.: Biochemical bases of accelerated purine biosynthesis de novo in human fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase. J. biol. Chem. 243, 1166–1173 (1968)

    PubMed  CAS  Google Scholar 

  • Rubio, R., Berne, R.M., Katori, M.: Release of adenosine in reactive hyperemia of the dog heart. Amer. J. Physiol. 216, 56–62 (1969)

    CAS  Google Scholar 

  • Rudolph, F.B., Fromm, H. J.: Initial rate studies of adenylosuccinate synthetase with product and competitive inhibitors. J. biol. Chem. 244, 3832–3839 (1969)

    PubMed  CAS  Google Scholar 

  • Sattin, A., Rall, T.W.: The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′, 5′-phosphate content of guinea pig cerebral cortex slices. Molec. Pharmacol. 6, 13–23 (1970)

    CAS  Google Scholar 

  • Scholtissek, C.: Studies on the uptake of nucleic acid precursors into cells in tissue culture. Biochim. biophys. Acta (Amst.) 158, 435–447 (1968)

    CAS  Google Scholar 

  • Schulman, M.P.: Purines and pyrimidines. In: Greenberg, D.M. (Ed.): Metabolic Pathways, Vol. II, pp. 389–457. New York: Academic Press 1961

    Google Scholar 

  • Schultz, J., Daly, J. W.: Cyclic adenosine 3′, 5′-monophosphate in guinea pig cerebral cortical slices. III. Formation, degradation, and reformation of cyclic adenosine 3′, 5′-monophos-phate during sequential stimulations by biogenic amines and adenosine. J. biol. Chem. 248, 860–866 (1973)

    PubMed  CAS  Google Scholar 

  • Seegmiller, J.E., Grayzel, A.I., Laster, L., Liddle, L.: Uric acid production in gout. J. clin. Invest. 40, 1304–1314(1961)

    PubMed  CAS  Google Scholar 

  • Segal, H.L., Brenner, B. M.: 5′-Nucleotidase of rat liver microsomes. J. biol. Chem. 235, 471–474 (1960)

    PubMed  CAS  Google Scholar 

  • Shiio, I., Ishii, K.: Regulation of purine ribonucleotide synthesis by end product inhibition. II. Effect of purine nucleotides on phosphoribosylpyrophosphate amidotransferase of Bacillus subtilisJ. Biochem. (Tokyo) 66, 175–181 (1969)

    CAS  Google Scholar 

  • Shimizu, H., Daly, J.: Formation of cyclic adenosine 3′, 5′-monophosphate from adenosine in brain slices. Biochim. biophys. Acta (Amst.) 222, 465–473 (1970)

    CAS  Google Scholar 

  • Shoaf, W.T., Jones, M.E.: Initial steps in pyrimidine synthesis in Ehrlich ascites carcinoma. Biochem. biophys. Res. Commun. 45, 796–802 (1971)

    PubMed  CAS  Google Scholar 

  • Shoaf, W.T., Jones, M.E.: Uridylic acid synthesis in Ehrlich ascites carcinoma. Properties, subcellular distribution, and nature of enzyme complexes of the six biosynthetic enzymes. Biochemistry 12, 4039–4051 (1973)

    PubMed  CAS  Google Scholar 

  • Sköld, O.: Uridine kinase from Ehrlich ascites tumor: purification and properties. J. biol. Chem. 235, 3273–3279 (1960)

    Google Scholar 

  • Smith, P.C., Knott, C.E., Tremblay, G.C.: Detection of the feedback control of pyrimidine biosynthesis in slices of several rat tissues. Biochem. biophys. Res. Commun. 55, 1141–1146 (1973)

    PubMed  CAS  Google Scholar 

  • Song, C.S., Bodansky, O.: Subcellular localization and properties of 5′-nucleotidase in the rat liver. J. biol. Chem. 242, 694–699 (1967)

    PubMed  CAS  Google Scholar 

  • Sperling, O., Persky-Brosh, S., Boer, P., Vries de, A.: Human erythrocyte phosphoribosylpyrophosphate synthetase mutationally altered in regulatory properties. Biochem. Med. 7, 389–395(1973)

    PubMed  CAS  Google Scholar 

  • Standerfer, S.B., Handler, P.: Fatty liver induced by orotic acid feeding. Proc. Soc. exp. Biol. Med. (N.Y.) 90, 270–271 (1955)

    CAS  Google Scholar 

  • Steck, T.L., Nakata, Y., Bader, J.P.: The uptake of nucleosides by cells in culture. I. Inhibition by heterologous nucleosides. Biochim. biophys. Acta (Amst.) 190, 237–249 (1969)

    CAS  Google Scholar 

  • Sullivan, J.M., Alpers, J.B.: In vitro regulation of rat heart 5′-nucleotidase by adenine nucleotides and magnesium. J. biol. Chem. 246, 3057–3063 (1971)

    PubMed  CAS  Google Scholar 

  • Switzer, R.L.: Regulation and mechanism of phosphoribosylpyrophosphate synthetase. I. Purification and properties of the enzyme from Salmonella typhimuriumJ. biol. Chem. 244, 2854 – 2863 (1969)

    PubMed  CAS  Google Scholar 

  • Tatibana, M.: Coordinate control of nucleotide biosynthetic pathways. J. Biochem. (Tokyo) 79, 41p–412p (1976)

    Google Scholar 

  • Tatibana, M., Ito, K.: Carbamyl phosphate synthetase of the hematopoietic mouse spleen and the control of pyrimidine biosynthesis. Biochem. biophys. Res. Commun. 26, 221–227 (1967)

    PubMed  CAS  Google Scholar 

  • Tatibana, M., Ito, K.: Control of pyrimidine biosynthesis in mammalian tissues. I. Partial purification and characterization of glutamine-utilizing carbamyl phosphate synthetase of mouse spleen and its tissue distribution. J. biol. Chem. 244, 5403–5413 (1969)

    PubMed  CAS  Google Scholar 

  • Tatibana, M., Shigesada, K.: Activation by 5-phosphoribosyl 1-pyrophosphate of glutamine-de-pendent carbamyl phosphate synthetase from mouse spleen. Biochem. biophys. Res. Commun. 46, 491–497 (1972a)

    PubMed  CAS  Google Scholar 

  • Tatibana, M., Shigesada, K.: Two carbamyl phosphate synthetases of mammals: specific roles in control of pyrimidine and urea biosynthesis. Advanc. Enzyme Regul. 10, 249–271 (1972 b)

    CAS  Google Scholar 

  • Tatibana, M., Shigesada, K.: Control of pyrimidine biosynthesis in mammalian tissues. V. Regulation of glutamine-dependent carbamyl phosphate synthetase: activation by 5-phosphoribosyl 1-pyrophosphate and inhibition by uridine triphosphate. J. Biochem. (Tokyo) 72, 549–560 (1972c)

    CAS  Google Scholar 

  • Taube, R.A., Berlin, R.D.: Membrane transport of nucleosides in rabbit polymorphonuclear leukocytes. Biochim. biophys. Acta (Amst.) 255, 6–18 (1972)

    CAS  Google Scholar 

  • Tomizawa, S., Aronow, L.: Studies on drug resistance in mammalian cells. II. 6-Mercaptopurine resistance in mouse fibroblasts. J. pharmacol. exp. Ther. 128, 107–114 (1960)

    PubMed  CAS  Google Scholar 

  • Tramell, P.R., Campbell, J.W.: Carbamyl phosphate synthesis in a land snail, Strophocheilus oblongusJ. biol. Chem. 245, 6634–6641 (1970)

    PubMed  CAS  Google Scholar 

  • Umezu, K., Amaya, T., Yoshimoto, A., Tomita, K.: Purification and properties of orotidine-5′-phosphate pyrophosphorylase and orotidine-5′-phosphate decarboxylase from bakers’ yeast. J. Biochem. (Tokyo) 70, 249–262 (1971)

    CAS  Google Scholar 

  • Valentine, W.N., Fink, K., Paglia, D. E., Harris, S.R., Adams, W. S.: Hereditary hemolytic anemia with human erythrocyte pyrimidine 5′-nucleotidase deficiency. J. clin. Invest. 54, 866–879 (1974)

    PubMed  CAS  Google Scholar 

  • Weissman, S.M., Eisen, A.Z., Fallon, H., Lewis, M., Karon, M.: The metabolism of ring-labeled orotic acid in man. J. clin. Invest. 41, 1546–1552 (1962)

    PubMed  CAS  Google Scholar 

  • Widnell, C.C., Unkeless, J.C.: Partial purification of a lipoprotein with 5′-nucleotidase activity from membranes of rat liver cells. Proc. nat. Acad. Sci. (Wash.) 61, 1050–1057 (1968)

    CAS  Google Scholar 

  • Williams, L.G., Bernhardt, S., Davis, R.H.: Copurification of pyrimidine-specific carbamyl phosphate synthetase and aspartate transcarbamylase of Neurospora crassaBiochemistry 9, 4329–4335 (1970)

    PubMed  CAS  Google Scholar 

  • Windmueller, H.G.: An orotic acid-induced, adenine-reversed inhibition of hepatic lipoprotein secretion in the rat. J. biol. Chem. 239, 530–537 (1964)

    PubMed  CAS  Google Scholar 

  • Windmueller, H.G., Spaeth, A.E.: Stimulation of hepatic purine biosynthesis by orotic acid. J. biol. Chem. 240, 4398–4405 (1965)

    PubMed  CAS  Google Scholar 

  • Wong, P.C.L., Murray, A.W.: 5-Phosphoribosyl pyrophosphate synthetase from Ehrlich ascites tumor cells. Biochemistry 8, 1608–1614 (1969)

    PubMed  CAS  Google Scholar 

  • Wyngaarden, J.B., Ashton, D.M.: The regulation of activity of phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides: a potential feedback control of purine biosynthesis. J. biol. Chem. 234, 1492–1496 (1959)

    PubMed  CAS  Google Scholar 

  • Yin, H.H., Berlin, R.D.: The relation of endogenous adenosine cyclic 3′: 5′-monophosphate to the antagonistic effects of adenosine and colchicine on cell shape. J. Cell Physiol. 85, 627–634 (1975)

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tatibana, M. (1978). Interrelationship of Purine and Pyrimidine Metabolism. In: Kelley, W.N., Weiner, I.M. (eds) Uric Acid. Handbook of Experimental Pharmacology, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66867-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66867-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66869-2

  • Online ISBN: 978-3-642-66867-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics