Skip to main content

Regulation of Purine Biosynthesis De Novo

  • Chapter
Uric Acid

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 51))

Abstract

Hyperuricemia can result from an increase in the rate of purine biosynthesis de novo, a decrease in the renal clearance of uric acid, or a combination of these two processes. The relative contribution of each of these processes to the development of hyperuricemia varies with the subpopulation under study. This might be expected, since gout is a clinical disorder of diverse etiologies. Some referral centers have reported that as many as 75% of their patients with gout exhibit increased rates of purine biosynthesis as judged from isotopic incorporation techniques (Gutman et al., 1958; Seegmiller et al., 1961). However, the experience in other centers suggests that only 15–25% of their patients with primary gout develop hyperuricemia due to an increase in the rate of purine biosynthesis (Watts et al., 1976). While the prevalence of purine overproduction in the general gouty population is not known, it appears that a significant proportion of these patients develop hyperuricemia due to an increase in the rate of purine biosynthesis de novo. Because of this association, the mechanisms responsible for the regulation of purine biosynthesis have been the subject of numerous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagnara, A.S., Brox, L.W., Henderson, J.F.: Kinetics of amidophosphoribosyltransferase in intact tumor cells. Biochim. biophys. Acta (Amst.) 350, 171–182 (1974a)

    CAS  Google Scholar 

  • Bagnara, A.S., Letter, A.A., Henderson, J.F.: Multiple mechanisms of regulation of purine biosynthesis de novo in intact tumor cells. Biochim. biophys. Acta (Amst.) 374, 259–270 (1974b)

    CAS  Google Scholar 

  • Becker, M.A.: Patterns of phosphoribosylpyrophosphate and ribose-5-phosphate concentration and generation in fibroblasts from patients with gout and purine overproduction. J. clin. Invest. 57, 308–318 (1976a)

    Article  PubMed  CAS  Google Scholar 

  • Becker, M. A.: Regulation of purine nucleotide synthesis. Effects of inosine on normal and hypoxanthine-guanine phosphoribosyltransferase deficient fibroblasts. Biochim. biophys. Acta (Amst.) 435, 132–144 (1976b)

    CAS  Google Scholar 

  • Becker, M.A., Meyer, L.J., Wood, A.W., Seegmiller, J.E.: Purine overproduction in man associated with increased phosphoribosylpyrophosphate synthetase activity. Science 179, 1123–1126 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Benedict, J.D., Roche, M., Yu, T.-F., Bein, E.J., Gutman, A.B., Stetten, D., Jr.: Incorporation of glycine nitrogen into uric acid in normal and gouty man. Metabolism 1, 3–12 (1952)

    PubMed  CAS  Google Scholar 

  • Bergmeyer, H.U.: Methods of Enzymatic Analysis, 2nd Ed. New York: Acad. Pr. 1974

    Google Scholar 

  • Beutler, E.: Effect of riboflavin compounds on glutathione reductase activity. In vivo and in vitro studies. J. clin. Invest. 48, 1957–1966 (1966)

    Article  Google Scholar 

  • Bien, E. J., Yu, T.-F., Benedict, J. O., Gutman, A.B., Stetten, D., Jr.: The relation of dietary nitrogen consumption to the rate of uric acid synthesis in normal and gouty man. J. clin. Invest. 32, 778–780(1953)

    Article  PubMed  CAS  Google Scholar 

  • Borsook, H., Keighley, G.L.: The “continuing” metabolism of nitrogen in animals. Proc. roy. Soc. B118, 488–521 (1935)

    Google Scholar 

  • Bowering, J., Calloway, D.H., Margen, S., Kaufman, N.A.: Dietary protein level and uric acid metabolism in normal man. J. Nutr. 100, 249–261 (1970)

    PubMed  CAS  Google Scholar 

  • Brockman, R.W., Anderson, E.P.: Biochemistry of cancer. Ann. Rev. Biochem. 32, 463–512 (1963)

    Article  PubMed  CAS  Google Scholar 

  • Brockman, R.W., Chumley, S.W.: Inhibition of formylglycinamide ribonucleotide synthesis in neoplastic cells by purines and analogs. Biochem. Biophys. Acta 95, 365–379 (1965)

    PubMed  CAS  Google Scholar 

  • Brosh, S., Boer, P., Kupper, B., Vries, A. de, Sperling, O.: De novo synthesis of purine nucleotides in human peripheral blood leukocytes. J. Clin. Invest. 58, 289–297 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Brosnan, J.T.: Factors affecting intracellular ammonia concentrations in liver. In: Grisolia, S., Bagvena, R., Mayor, F. (Eds.): The Urea Cycle. New York: John Wiley and Sons 1976

    Google Scholar 

  • Caldwell, I.C., Henderson, J.F., Paterson, A.R.P.: The enzymatic formation of 6-methylmercap-topurine ribonucleoside phosphate. Canad. J. Biochem. 44, 229–245 (1966)

    Article  CAS  Google Scholar 

  • Calloway, D.H., Margen, S.: Human response to diets very high in protein. Fed. Proc. 27, 725a (1968)

    Google Scholar 

  • Caskey, C.T., Ashton, D.M., Wyngaarden, J.B.: The enzymology of feedback inhibition of glutamine phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides. J. biol. Chem. 239, 2570–2579 (1964)

    PubMed  CAS  Google Scholar 

  • Clifford, A. S., Riumallo, J. A., Baliga, B. S.: Liver nucleotide metabolism in relation to amino acid supply. Biochim. biophys. Acta (Amst.) 277, 443–458 (1972)

    CAS  Google Scholar 

  • Emmerson, B.T., Wyngaarden, J.B.: Purine metabolism in heterozygous carriers of hypoxanthine-guanine phosphoribosyltransferase deficiency. Science 166, 1533–1535 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Feigelson, M, Feigelson, P.: Relationships between hepatic enzyme induction, glutamate formation and purine nucleotide biosynthesis in gluco-corticoid action. J. biol. Chem. 241, 5819 – 5826 (1966)

    Google Scholar 

  • Feldman, R.I., Taylor, MW.: Purine mutants of mammalian cell lines. II. Identification of a phosphoribosylpyrophosphate amidotransferase deficient mutant of Chinese hamster lung cells. Biochem. Genet. 13, 227–234 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Fox, I.H., Kelley, W.N.: Phosphoribosylpyrophosphate in man: biochemical and clinical significance. Ann. intern. Med. 74, 424–433 (1971)

    PubMed  CAS  Google Scholar 

  • Greene, M.L., Seegmiller, J.E.: Elevated erythrocyte phosphoribosylpyrophosphate in x-linked uric acid: Importance of PRPP concentration in the regulation of human purine biosynthesis. J. clin. Invest. 48, 32 a (1969)

    Google Scholar 

  • Gutman, A.B., Yu, T.-F., Black, H.: Incorporation of glycine-1-C14 and glycine-N15 into uric acid in normal and gouty subjects. Amer. J. Med. 25, 917–932 (1958)

    Article  PubMed  CAS  Google Scholar 

  • Hartman, S.C.: Phosphoribosylpyrophosphate amidotransferase: purification and general catalytic properties. J. biol. Chem. 238, 3024–3035 (1963)

    PubMed  CAS  Google Scholar 

  • Henderson, J.F.: Dual effects of ammonium chloride on purine biosynthesis de novo in Ehrlich ascites tumor cells in vitro. Biochim. biophys. Acta (Amst.) 76, 173–180 (1963a).

    Article  CAS  Google Scholar 

  • Henderson, J.F.: Feedback inhibition of purine biosynthesis in ascites tumor cells by purine analogs. Biochem. Pharmacol. 12, 551–556 (1963b)

    Article  PubMed  CAS  Google Scholar 

  • Henderson, J.F.: Pathological abnormalities of purine biosynthesis de novo. In: Regulation of Purine Biosynthesis de Novo. Monograph 170, p. 254. Washington, D.C. (1972)

    Google Scholar 

  • Henderson, J.F., Caldwell, I.C., Paterson, A.R.P.: Decreased feedback inhibition in a 6-methylmercaptopurine ribonucleoside resistant tumor. Cancer Res. 27, 1773–1778 (1967)

    PubMed  CAS  Google Scholar 

  • Henderson, J.F., Mercer, N.J.H.: Feedback inhibition of purine biosynthesis de novo in mouse tissue in vivo. Nature (Lond.) 212, 507–508 (1966)

    Article  CAS  Google Scholar 

  • Henderson, J.F., Rosenbloom, F.M., Kelley, W.N., Seegmiller J. E.: Variations in purine metabolism of cultured skin fibroblast from patients with gout. J. clin. Invest. 47, 1511–1516 (1968)

    Article  PubMed  CAS  Google Scholar 

  • Hershfield, M.S., Seegmiller, J.E.: Regulation of de novo purine biosynthesis in human lymphoblasts. J. biol. Chem. 251, 7348–7354 (1976)

    PubMed  CAS  Google Scholar 

  • Hershfield, M.S., Seegmiller, J.E.: Regulation of de novo purine synthesis in human lymphoblasts. Advanc. exp. Med. (in press) (1977)

    Google Scholar 

  • Hershko, A., Razin, A., Mager, J.: Regulation of the synthesis of 5-phosphoribosyl-1-pyrophosphate in intact red blood cells and in cell free preparations. Biochim. biophys. Acta (Amst.) 184, 64–76 (1969)

    CAS  Google Scholar 

  • Heslot, H., Nagy, M., Whitehead, E.: Recherches genetiques et biochimiques sur la premier enzyme de la biosynthese des purine chez le Schizosaccharomyces. C.R. Acad. Sci. (Paris) [D] 263, 57–58 (1966)

    CAS  Google Scholar 

  • Holmes, E.W., King, G.L., Leyva, A., Singer, S.G: A purine auxotroph deficient in phosphoribosylpyrophosphate amidotransferase and phosphoribosylpyrophosphate aminotransferase activities with normal activity of ribose-5-phosphate aminotransferase. Proc. natl. Acad. Sci. (Wash.) 73, (7), 2458–2461 (1976)

    Article  CAS  Google Scholar 

  • Holmes, E.W., McDonald, J.A., McCord, J.M., Wyngaarden, J.B., Kelley, W.N.: Human glutamine phosphoribosylpyrophosphate amidotransferase: kinetic and regulatory properties. J. biol. Chem. 248, 144–150 (1973a)

    PubMed  CAS  Google Scholar 

  • Holmes, E.W., Wyngaarden, J.B., Kelley, W.N.: Human glutamine phosphoribosylpyrophosphate amidotransferase: two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J. biol. Chem. 248, 6035–6040 (1973b)

    PubMed  CAS  Google Scholar 

  • Howard, W.J., Appel, S.H.: Control of purine biosynthesis: FGAR amidotransferase. Clin. Res. 16, 344(1968)

    Google Scholar 

  • Howell, R.R.: Hyperuricemia in childhood. Fed. Proc. 27, 1078 (1968)

    CAS  Google Scholar 

  • Katunuma, N., Weber, G.: Glutamine phosphoribosylpyrophosphate amidotransferase: Increased activity in hepatomas. FEBS Letters 49, 53–56 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Kelley, W.N., Fox, I.H., Wyngaarden, J.B.: Regulation of purine biosynthesis in cultured human cells. I. Effects of orotic acid. Biochim. biophys. Acta (Amst.) 215, 512–516 (1970 a)

    CAS  Google Scholar 

  • Kelley, W.N., Fox, I.H., Wyngaarden, J.B.: Essential role of phosphoribosylpyrophosphate in regulation of purine biosynthesis in cultured human fibroblasts. Clin. Res. 18, 457 (1970b)

    Google Scholar 

  • King, G.L., Holmes, E.W.: Comparison of NH3 and glutamine utilization by human PP-ribose-P amidotransferase. Fed. Proc. (abstracts 1977)

    Google Scholar 

  • King, G.L., Meade, J.C., Holmes, E.W.: Demonstration of NH3 utilization in the first reaction of purine biosynthesis de novo. Clin. Res. 25, 32 A (1977)

    Google Scholar 

  • Kovarsky, J., Evans, M., Holmes, E.W.: Regulation of human amidophosphoribosyltransferase: interaction of orthophosphate, PP-ribose-P and purine ribonucleotides. Canad. J. Biochem. (in press)

    Google Scholar 

  • Lalane, M., Henderson, J.F.: Effects of hormones and drugs on phosphoribosylpyrophosphate concentrations in mouse liver. Canad. J. Biochem. 53, 394–399 (1975)

    Article  Google Scholar 

  • Lang, W. K.: Association between glutathione reductase variants and plasma uric acid concentration in a Negro population. Amer. J. hum. Genet. 22, 14 a—15 a (1970)

    Google Scholar 

  • Marcolongo, R., Micheli, V., Pompucci, G., Marinello, E.: Comportaments della glutamina-fosforibosilpirosfato amidotransferasi in pazienti affetti da gotta primativa. Reumatismo 26, 223–229 (1974)

    PubMed  CAS  Google Scholar 

  • Martin, D.W., Jr., Maler, B.A.: Phosphoribosylpyrophosphate synthetase is elevated in fibroblasts from patients with the Lesch-Nyhan syndrome. Science 193, 408–411 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Momose, H., Nishikawa, H., Shies, L.: Regulation of purine nucleotide synthesis in Bacillus subtilis. J. biol. Chem. 59, 325 (1966)

    CAS  Google Scholar 

  • Nagy, M.: Regulation of the biosynthesis of purine nucleotides in Schizosacchoromyces pombe. I. Properties of the phosphoribosylpyrophosphate: glutamine amidotransferase of the wild strain and of a mutant desensitized towards feedback modifiers. Biochem. biophys. Acta (Amst.) 198, 471–481 (1971)

    Google Scholar 

  • Nierlich, D.P., Magasanik, B.: Control by repression of purine biosynthetic enzymes in aerogenes. Fed. Proc. 22, 476 (1963)

    Google Scholar 

  • Pagliara, A.S., Goodman, A.D.: Elevation of plasma glutamate in gout, its possible role in the pathogenesis of hyperuricemia. New Engl. J. Med. 281, 767–770 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A.R.P., Wang, M.C.: Mechanism of the growth inhibition potentiation arising from combinations of 6-mercaptopurine with 6-methylmercaptopurine ribonucleoside. Cancer Res. 30, 2379–2387(1970)

    PubMed  CAS  Google Scholar 

  • Prusiner, S., Stadtman, E.R.: The Enzymes of Glutamine Metabolism. New York-London: Acad. Pr. 1973

    Google Scholar 

  • Reem, G.H.: Enzymatic synthesis of 5′-phosphoribosylamine from ribose 5-phosphate and ammonia, on alternate first step in purine biosynthesis. J. biol. Chem. 243, 5695–5701 (1968)

    PubMed  CAS  Google Scholar 

  • Reem, G.H.: De novo purine biosynthesis by two pathways in Burkitt lymphoma cells and in human spleen. J. clin. Invest. 51, 1058–1062 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Reem, G.H.: Enzymatic synthesis of phosphoribosylamine in human cells. J. biol. Chem. 249, 1696–1703 (1974a)

    PubMed  CAS  Google Scholar 

  • Reem, G.H.: Pharmacologic regulation of the early steps of purine biosynthesis in Burkitt lymphoma cells and in Ehrlich ascites tumor cells. J. Pharmacol, exp. Ther. 191, 1–9 (1974b)

    CAS  Google Scholar 

  • Reem, G.: Phosphoribosylpyrophosphate overproduction; a new metabolic abnormality in the Lesch-Nyhan syndrome. Science 190, 1098–1099 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Reem, G.H., Friend, C.: Purine metabolism in murine virus-induced erythroleukemic cells during differentiation in vitro. Proc. nat. Acad. Sci. (Wash.) 72, 1630–1634 (1975)

    Article  CAS  Google Scholar 

  • Rosenbloom, F.M., Henderson, J.F., Caldwell, I.C., Kelley, W.N., Seegmiller, J.E.: Biochemical bases of accelerated purine biosynthesis de novo in human fibroblasts lacking hypoxanthineguanine phosphoribosyltransferase. J. biol. Chem. 243, 1166–1173 (1968)

    PubMed  CAS  Google Scholar 

  • Scholar, E.M., Brown, P.R., Parks, R.E., Jr.: Synergistic effect of 6-mercaptopurine and 6-methylmercaptopurine ribonucleoside on the levels of adenine nucleotides of sarcoma 180 cells. Cancer Res. 32, 259–269 (1972)

    PubMed  CAS  Google Scholar 

  • Seegmiller, J.E., Grayzel, A.I., Laster, L., Liddle, L.: Uric acid production in gout. J. clin. Invest. 40, 1304–1314(1961)

    Article  PubMed  CAS  Google Scholar 

  • Seegmiller, J.E., Grayzel, A.I., Liddle, L.: The effect of 2-ethylamino-1, 3, 4-thiadiazole on the incorporation of glycine into urinary purines and uric acid in man. Metabolism 12, 507–515 (1963)

    PubMed  CAS  Google Scholar 

  • Seegmiller, J.E., Rosenbloom, R.M., Kelley, W.N.: An enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155, 1682–1684 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Segal, S., Wyngaarden, J.B.: Plasma glutamine and oxypurine content in patients with gout. Proc. Soc. exp. Biol. (N.Y.) 88, 342–345 (1955)

    CAS  Google Scholar 

  • Skaper, S.D., Willis, R.C., Seegmiller, J.E.: Intracellular 5-phosphoribosyl-1-pyrophosphate: Decreased availability during glutamine limitation. Science 193, 587–588 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Smirnov, M.N., Smirnov, V.N., Budowsky, E.I., Inge-Vechtomov, S.G., Serebrjakov, N.C.: Red pigment of adenine deficient yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 27, 299–304 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Sperling, O., Boer, P., Persky-Brosh, S.: Altered kinetic property of erythrocyte phosphoribosylpyrophosphate synthetase in excessive purine production. Rev. europ. Etud. clin. Biol. 17, 703–706 (1972)

    CAS  Google Scholar 

  • Sperling, O., Wyngaarden J.B., Starmer, C.F.: The kinetics of intramolecular distribution of 15N in uric acid after administration of [15N]glycine. J. clin. Invest. 52, 2468–2485 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.W., Ling, L., Pipkorn J.: Coordinate effect of mutation on PRPP amidotransferase and PRPP aminotransferase activities in Chinese hamster lung cells. In vitro, abstract (1976)

    Google Scholar 

  • Walser, M., Lung, P., Roderman, N.B.: Synthesis of essential amino acids from their α-keto analogues by perfused rat liver and muscle. J. clin. Invest. 52, 2865–2877 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Watts, R. W.E.: (Chairman of panel discussion “Hyperuricemia as a Risk Factor.”) Second International Symposium on Purine Metabolism in Man. Baden (Austria), June 20–26, 1976

    Google Scholar 

  • Williamson, D.H., Lopes-Vieira, O., Walker, B.: Concentration of free glucogenic amino acids in livers of rats subjected to various metabolic stresses. Biochem. J. 104, 497–502 (1967)

    PubMed  CAS  Google Scholar 

  • Wood, A.W., Seegmiller, J.E.: Properties of 5-phosphoribosyl-1-pyrophosphate amidotransferase from human lymphoblasts. J. biol. Chem. 248, 138–143 (1973)

    PubMed  CAS  Google Scholar 

  • Wyngaarden J.B., Ashton, D.M.: The regulation of activity of phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides: a potential feedback control of purine biosynthesis. J. biol. Chem. 234, 1492–1496 (1959)

    PubMed  CAS  Google Scholar 

  • Wyngaarden J. B., Silberman, H.R., Sadler, J.H.: Feedback mechanisms influencing purine ribotide synthesis. Ann. N.Y. Acad. Sci. 75, 45–60 (1958)

    Article  PubMed  CAS  Google Scholar 

  • Yü, T.-F., Adler, M., Bobrow, E.: Plasma and urinary amino acids in primary gout, with special reference to glutamine. J. clin. Invest. 48, 885–894 (1969)

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holmes, E.W. (1978). Regulation of Purine Biosynthesis De Novo. In: Kelley, W.N., Weiner, I.M. (eds) Uric Acid. Handbook of Experimental Pharmacology, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66867-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66867-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66869-2

  • Online ISBN: 978-3-642-66867-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics