Advertisement

Electron Microscopy of Specific Proteins: Three-Dimensional Mapping of Ribosomal Proteins Using Antibody Labels

  • J. A. Lake

Abstract

Knowledge of ribosome structure and function has increased at a remarkable rate. One of the reasons for this increased understanding has been the very fruitful combination of biochemistry, immunology, and electron microscopy. This Chapter will explain in detail the techniques of electron microscopy and the techniques of interpretation of electron micrographs of antibody- labeled ribosomes and ribosomal subunits in anticipation that these techniques can be usefully extended to the analysis of other cell organelles and supramolecular structures such as microtubules, flagella, nuclear pores, thick and thin muscle filaments, gap junctions, and enzyme complexes.

Keywords

Ribosomal Protein Large Subunit Small Subunit Ribosomal Subunit Elongation Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bode, U., Lutter, L. C., Stöffler, G.: Proteins Sl4 and Sl9 are near–neighbors in the E. coli ribosome. FEBS Lett. 45, 232–236 (1974)CrossRefGoogle Scholar
  2. Bollen, A., Kahan, L., Heimark, R. L., Cozzone, A., Traut, R. R., Hershey, J. W. B.: Cross-linking of initiation factor IF-2 to E. coli 30 S ribosomal proteins with dimethylsuberimidate. J. Biol. Chem. 250, 4310–4314 (1975)Google Scholar
  3. Brenner, S., Home, R. W.: A negative staining method for high resolution electron microscopy of viruses. Biochim. Biophys. Acta 34, 103–110 (1959)CrossRefGoogle Scholar
  4. Bruskov, V. I., Kieselev, N. A.: Electron microscope study of the structure of E. coli ribosomes and CM-like particles. J. Mol. Biol. 37, 367–377 (1968)CrossRefGoogle Scholar
  5. Eiserling, F., Levin, J. G., Byrne, R., Karlsson, U., Nirenberg, M. W., Sjostrand, F. S.: Polysomes and DNA-dependent amino acid incorporation in E. coli extracts. J. Mol. Biol. 10, 536–539 (1964)CrossRefGoogle Scholar
  6. Gorini, L.: Ribosomal discrimination of tRNAs. Nature (New Biol.) 234, 261–264 (1971)Google Scholar
  7. Hall, C. E., Slayter, H. S.: Electron microscopy of ribonucleoprotein particles from E. coli. J. Mol. Biol. 1, 329–332 (1959)CrossRefGoogle Scholar
  8. Hart, R. G.: Electron microscopy of 50 S ribosomes of E. coli. Biochim. Biophys. Acta 60, 629–637 (1962)CrossRefGoogle Scholar
  9. Hart, R. G.: Surface features of the 50S ribosomal component of E. coli. Proc. Natl. 209 Aad. Sci. U. S. 53, 1415–1420 (1965)CrossRefGoogle Scholar
  10. Held, W. A., Ballow, B., Mizushima, S., Nomura, M.: Assembly mapping of 30 S ribosomal proteins from E. coli: Further studies. J. Biol. Chem. 249, 3103–3111 (1974)Google Scholar
  11. Higo, K., Held, W., Kahan, L., Nomura, M.: Functional correspondence between 30 S ribosomal proteins of E. coli and B. stearothermophilus. Proc. Natl. Acad. Sci. U. S. 70, 944–948 (1973)ADSCrossRefGoogle Scholar
  12. Higo, K., Loertscher, K.: Amino terminal sequence of some E. coli 30 S ribosomal proteins and functionally corresponding B. stearothermophilus ribosomal proteins. J. Bacteriol. 118, 180–186 (1974)Google Scholar
  13. Hill, W. E., Thompson, J. D., Anderegg, J. W.: X-ray scattering study of ribosomes from Escherichia coli. J. Mol. Biol. 44, 89–102 (1969)CrossRefGoogle Scholar
  14. Huxley, H. E., Zubay, G.: Electron microscope observations on the structure of microsomal particles from E. coli. J. Mol. Biol. 2, 10–18 (1960)CrossRefGoogle Scholar
  15. Kabat, E. A.: Structural concepts in immunology and immunochemistry. New York-Toronto-London: Holt, Rinehart and Winston (1968)Google Scholar
  16. Kahan, L., Held, W. A., Nomura, M.: Effects of aminoethylation of cysteine residues on the structural and functional activities of the E. coli 30 S ribosomal proteins. J. Mol. Biol. 88, 797–808 (1974)CrossRefGoogle Scholar
  17. Lake, J. A.: Aminoacyl–tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 74, 1903–1907 (1977)ADSCrossRefGoogle Scholar
  18. Lake, J. A.: Ribosome structure determined by electron microscopy of E. coli small sub-units, large subunits and monomeric ribosomes. J. Mol. Biol. 105, 131–160 (1976)CrossRefGoogle Scholar
  19. Lake, J. A., Kahan, L.: Ribosomal proteins S5, S11, S13 and S19 localized by electron microscopy of antibody-labeled subunits. J. Mol. Biol. 99, 631–644 (1975)CrossRefGoogle Scholar
  20. Lake, J. A., Leonard, K. R.: Structure and protein distribution for the capsid of Caulobacter crescentus bacteriophage Ф CbK. J. Mol. Biol. 86, 499–518 (1974)CrossRefGoogle Scholar
  21. Lake, J. A., Nonomura, Y., Sabatini, D. D.: Ribosome structure as studied by electron microscopy. In: Ribosomes. Nomura, M., Tissieres, A., Lengyel, P. (eds.). New York: Cold Spring Harbor Laboratory Press, 1974 a, pp. 543–557Google Scholar
  22. Lake, J. A., Pendergast, M., Kahan, L., Nomura, M.: Ribosome structure: three dimensional distribution of proteins S14 and S4. J. Supramol. Struc. 2, 189–195 (1974 b)CrossRefGoogle Scholar
  23. Lake, J. A., Pendergast, M., Kahan, L., Nomura, M.: Localization of E. coli ribosomal proteins S4 and Sl4 by electron microscopy of antibody-labeled subunits. Proc. Natl. Acad. Sci. U. S. 71, 4688–4692 (1974 c)ADSCrossRefGoogle Scholar
  24. Leonard, K. R., Kleinschmidt, A. K., Agabian-Kashishian, N., Shapiro, L., Maizel, J. W., Jr.: Structural studies on the capsid of Caulobacter crescentus bacteriophage ФCbK. J. Mol. Biol. 71, 201–216 (1972)CrossRefGoogle Scholar
  25. Leonard, K. R., Kleinschmidt, A. K., Lake, J. A.: Caulobacter crescentus bacteriophage ФCbK: structure and in vitro self-assembly of the tail. J. Mol. Biol. 81, 349–365 (1973)CrossRefGoogle Scholar
  26. Lubin, M.: Observations on the shape of the 50 S ribosomal subunit. Proc. Natl. Acad. Sci. U. S. 61, 1454–1461 (1968)ADSCrossRefGoogle Scholar
  27. Lutter, L. C., Kurland, C. G.: Reconstitution of active ribosomes with cross-linked 210 proteins. Nature (New Biol.) 243, 15–18 (1973)CrossRefGoogle Scholar
  28. Mizushima, S., Nomura, M.: Assembly mapping of 30 S ribosomal proteins from E. coli. Nature (London) 266, 1214–1218 (1970)ADSCrossRefGoogle Scholar
  29. Nomura, M., Mizushima, S., Ozaki, M., Traub, P., Lowry, C. V.: Structure and function of ribosomes and their molecular components. Cold Spring Harbor Symp. Quant. Biol. 34, 49–61 (1969)Google Scholar
  30. Nomura, M., Tissieres, A., Lengyel, P. (eds.): Ribosomes, New York: Cold Spring Harbor Laboratory Press (1974)Google Scholar
  31. Reinbolt, J., Schiltz, E.: The primary structure of ribosomal protein S4 from E. coli. FEBS Lett. 36, 250–253 (1973)CrossRefGoogle Scholar
  32. Richter, D., Erdmann, V. A., Sprinzl, M.: Specific recognition of GTψC loop (loop IV) of tRNA by 50 S ribosomal subunits from E. coli. Nature (New Biol.) 246, 132–135 (1973)Google Scholar
  33. Sommer, A., Traut, R. R.: Diagonal polyacrylamide-dodecyl sulfate gel electrophoresis for the identification of ribosomal proteins crosslinked with methyl-4-mercap-tobutyrimidate. Proc. Natl. Acad. Sci. U. S. 71, 3946–3950 (1974)ADSCrossRefGoogle Scholar
  34. Stöffler, G., Wittmann, H. G.: Sequence differences of E. coli 30 S ribosomal proteins as determined by immunochemical methods. Proc. Natl. Acad. Sci. U. S. 68, 2283–2287 (1971)ADSCrossRefGoogle Scholar
  35. Sun, T-T., Bollen, A., Kahan, L., Traut, R. R.: Topography of ribosomal proteins of the E. coli 30 S subunit as studied with the reversible crosslinking reagent methyl-4-mercaptobutyrimidate. Biochemistry 13, 2334–2340 (1974)CrossRefGoogle Scholar
  36. Traub, P., Nomura, M.: Structure and function of E. coli ribosomes. Reconstitution of functionally active 30 S ribosomal particles from RNA and proteins. Proc. Natl. Acad. Sci. U. S. 59, 777–781 (1968)ADSCrossRefGoogle Scholar
  37. Valentine, R. C., Green, M.: Electron microscopy of an antibody-hapten complex. J. Mol. Biol. 27, 615–617 (1967)CrossRefGoogle Scholar
  38. Valentine, R. C., Shapiro, B. M., Stadtman, E. R.: Regulation of glutamine synthetase XII. Electron microscopy of the enzyme from E. coli. Biochemistry 7, 2143–2152 (1968)CrossRefGoogle Scholar
  39. Vasiliev, V. D.: Electron microscopy study of 70 S ribosomes of E. coli. FEBS Lett. 14, 203–205 (1971)CrossRefGoogle Scholar
  40. Vasiliev, V. D.: Morphology of the ribosomal 30 S subparticle according to electron microscopic data. Acta Biol. Med. Germ. 33, 779–793 (1974)Google Scholar
  41. Wabl, M. R.: Electron microscopic localization of two proteins on the surface of the 50 S ribosomal subunit of E. coli using specific antibody markers. J. Mol. Biol. 84, 241–247 (1974)CrossRefGoogle Scholar
  42. Wabl, M. R., Barends, P. J., Nanninga, N.: Tilting experiments with negatively stained E. coli ribosomal subunits. An electron microscopic study. Cytobiologie 7, 1–9 (1973 a)Google Scholar
  43. Wabl, M. R., Doberer, H. G., Hoglund, S., Ljung, L.: Electron microscopic study of isolated 30 S ribosomal subunits of E. coli. Cytologie7,111–115 (1973 b)Google Scholar
  44. Wittmann, H. G., Wittmann-Liebold, B.: Chemical structure of bacterial ribosomal proteins. In: Ribosomes. Nomura, M., Tissieres, A., Lengeyel, P. (eds.). New York: Cold Spring Harbor Laboratory Press, 1974, pp. 115–140Google Scholar
  45. Yanagida, M. and Ahmad-Zadeh, C.: Determination of gene product locations in bacteriophage T4 by specific antibody association. J. Mol. Biol. 51, 411–421 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • J. A. Lake

There are no affiliations available

Personalised recommendations