Geochemistry and Diagenesis of Recent Heavy Metal Ore Deposits at the Atlantis-II-Deep (Red Sea)

  • K. Weber-Diefenbach

Summary

The ore sludges of the Atlantis-II-Deep (Red Sea) were examined geochemically and it was attempted to determine the influence of early diagenesis.

The evaluation of the analysis data yielded the following results: chemical variation is large; even sediment areas of the same facies often differ considerably. Main element is Fe; the Zn- and Cu-con-tent is rather small, it only increases considerably in the sulphidic area. Partly higher Cd, Pb and Ag content can be noted. From the geochemical point of view it can be concluded that the hydrothermal solutions are predominantly volcanic. Diagenesis already starts near the surface. The development of the layering and the crystallinity of the minerals increase with depth, at the same time the percentage of adsorptive Zn decreases.

Keywords

Sulphide Sandstone Geochemistry Calcite Compaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, T.D.: Magnetic and gravity fields over the Red Sea. Phil. Trans. Roy. Soc. London A 267, 153–180(1970)CrossRefGoogle Scholar
  2. Bäcker, H., Richter, H.: Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis-II-Tief im Roten Meer. Geol. Rdsch. 62, 697–741 (1973)CrossRefGoogle Scholar
  3. Bischoff, J.L.: Red Sea geothermal brine deposits: Their mineralogy, chemistry, and genesis. In: Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Degens, E.T., Ross, D.R. (eds.).New York-Heidelberg-Berlin: Springer 1969, pp. 368–401Google Scholar
  4. Carella, R., Scarpa, M.: Geological results of exploration in Sudan by Agip Mineraria. 4th Arab Petrol. Congr. Agip Mineraria, San Donato, Milanese, 1962, p. 23Google Scholar
  5. Degens, E.T.: Sea floor spreading: Lagerstättenkundliche Untersuchungen im Roten und im Schwarzen Meer. Umschau 70, 268–274 (1970)Google Scholar
  6. Ellis, A.: Natural hydrothermal systems and experimental hpt water/rock interactions: reactions with NaCl-solutions and trace metal extractions. Geochim. Cosmochim. Acta 32, 1356–1363 (1968)CrossRefGoogle Scholar
  7. Engelhardt, W. von: Die Bildung von Sedimenten und Sedimentgesteinen. Teil III. Stuttgart: Schweizerbarth 1973Google Scholar
  8. Girdler, R.W.: A review of Red Sea heat flow. Phil. Trans. Roy. Soc. London A 267, 191–203 (1970)CrossRefGoogle Scholar
  9. Haenel, R.: Heat flow measurements in the Red Sea and the Gulf of Aden. Z. Geophys. 38, 1035–1047 (1972)Google Scholar
  10. Hartmann, M.: Untersuchungen von suspendiertem Material in den Hydrothermallaugen des Atlantis-II-Tiefs. Geol. Rdsch. 62, 742–754 (1973)CrossRefGoogle Scholar
  11. Hartmann, M., Nielsen, H.: Sulfur isotopes in the hot brine and sediment of Atlantis-II-Deep (Red Sea). Mar. Geol. 4, 305–306 (1966)CrossRefGoogle Scholar
  12. Kaplan, J.R., Sweeney, R.E., Nissenbaum, A.: Sulfur isotope studies on the Red Sea geothermal brines and sediments. In: Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Degens, E.T., Ross, D.R. (eds.). New York-Heidelberg-Berlin: Springer 1969, pp. 474–498Google Scholar
  13. Laughton, A.S.: A new bathymetric chart of the Red Sea. Phil. Trans. Roy. Soc. London A 267, 21–22 (1970)CrossRefGoogle Scholar
  14. Phillips, J.D., Woodside, J., Bowin, CO.: Magnetic and gravity anomalies in the central Red Sea. In: Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Degens, E.T., Ross, D.R. (eds.). New York-Heidelberg-Berlin: Springer 1969, pp. 98–113Google Scholar
  15. Schneider, W., Wachendorf, H.: Vulkanismus und Grabenbüdung im Roten Meer. Geol. Rdsch. 62, 754–773 (1973)CrossRefGoogle Scholar
  16. Sweeney, R.E., Kaplan, I.R.: Pyrite framboid formation: Laboratory synthesis and marine sediments. Econ. Geol. 68, 618–634 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • K. Weber-Diefenbach
    • 1
  1. 1.MünchenGermany

Personalised recommendations