Structure and Function of the Genome of Viruses Containing Single-Stranded RNA as Genetic Material: The Concept of Transcription and Translation Helices and the Classification of these Viruses into Six Groups

  • Gerd Wengler
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 78)


Studies on the structure of viruses have shown that the viral nucleic acid is complexed to viral protein and that these nucleoproteins can be of three different types: complex, helical, or icosahedral. No generally valid concept for the mechanism of assembly of complex nucleoproteins has been established, but the biologic and physical principles involved in the assembly of helical and icosahedral nucleoproteins have been analyzed in detail. These analyses have shown that the protein component is built up of identical subunits thus efficiently using the limited amount of viral genetic information which codes for viral structural proteins for constructing protein complexes of rather high molecular weight (Crick and Watson, 1956). It has been predicted that the organization of identical protein subunits in equivalent positions in an isometric nucleoprotein leads to the assembly of particles of cubic symmetry (Crick and Watson, 1956). Furthermore, Caspar and Klug introduced the concept of quasiequivalence into the analysis of virus structure and showed that the assembly of isometric protein complexes from identical protein subunits positioned in quasi-equivalent positions leads to particles having cubic symmetry of the icosahedral type (Caspar andKlug, 1962). Why the genetic material is organized in icosahedral nucleoproteins in some viruses and in helical nucleoproteins in others remains uncertain. Caspar and Klug have described the stability, assembly, and disassembly of these two types of nucleoproteins and have suggested that “one or the other could be selected according to the biologic function required (Caspar and Klug, 1962).”


Tobacco Mosaic Virus Vesicular Stomatitis Virus Rous Sarcoma Virus Animal Virus Plant Rhabdovirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltimore, D.: Viral RNA-dependent DNA polymerase. Nature 22, 1209–1211 (1970)CrossRefGoogle Scholar
  2. Baltimore, D.: Expression of animal virus genomes. Bacteriol. Rev. 35, 235–241 (1971)PubMedGoogle Scholar
  3. Baltimore, D., Huang, A.S., Stampfer, M.: Ribonucleic acid synthesis of vesicular stomatitis virus. II. An RNA polymerase in the virion. Proc. Natl. Acad. Sci. U.S.A. 66, 572–576 (1970)PubMedCrossRefGoogle Scholar
  4. Bishop, J.M., Varmus, H.E.: The molecular biology of RNA tumor viruses. In: Cancer, Vol.2, p. 3–48, Becker, F.F., (ed.). New York: Plenum Publishing Corporation 1976Google Scholar
  5. Boatman, S., Kaper, J.M.: Molecular organization and stabilizing forces of simple RNA viruses. IV. Selective interference with protein-RNA interactions by use of sodium dodecyl sulfate. Virology 70, 1–16 (1976)PubMedCrossRefGoogle Scholar
  6. Bouloy, M., Colbere, F., Krams-Ozden, S., Vialat, P., Garapin, A.-C., Hannoun, C.: Activité RNA polymérasique associeé à un Bunyavirus (Lumbo). C. R. Acad. Sci. Ser. D 280, 213–215 (1975)Google Scholar
  7. Carter, M.F., Biswal, N., Rawls, W.E.: Polymerase activity of Pichinde viruses. J. Virol. 13, 577–583 (1974)PubMedGoogle Scholar
  8. Casjens, S., King, J.: Virus assembly. Annu. Rev. Biochem. 44, 555–611 (1975)PubMedCrossRefGoogle Scholar
  9. Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1–24 (1962)Google Scholar
  10. Choppin, P.W., Compans, R.W.: Reproduction of paramyxoviruses. In: Comprehensive Virology, vol. 4, Fraenkel-Conrat, H., Wagner, R.R., (eds.). New York: Plenum Press 1975Google Scholar
  11. Chow, N.-L., Simpson, R.W.: RNA-dependent RNA polymerase activity associated with virionsand subviral particles of myxoviruses. Proc. Natl. Acad. Sci. U.S.A. 68, 752–756 (1970)CrossRefGoogle Scholar
  12. Crick, F.H.C., Watson, J.D.: Structure of small viruses. Nature 177, 473–75 (1956)PubMedCrossRefGoogle Scholar
  13. Emerson, S.U.: Vesicular stomatitis virus: Structure and function of virion components. Curr. Top. Microbiol. Immunol. 73, 1–34 (1976)PubMedGoogle Scholar
  14. Fenner, F.: Classification and nomenclature of viruses. Intervirology 7, 1–116 (1976)PubMedCrossRefGoogle Scholar
  15. Fenner, F., McAuslan, B.R., Mims, C.A., Sambrok, J., White, D.O.: The Biology of Animal Viruses, 2nd ed. New York: Academic Press 1974Google Scholar
  16. Finch, J.T., Gibbs, A.J.: Observations on the structure of the nucleocapsids of some paramyxoviruses. J. Gen. Virol. 6, 141–150 (1970)PubMedCrossRefGoogle Scholar
  17. Finch, J.T., Klug, H.: Structure of poliomyelitis virus. Nature 183, 1709–1714 (1959)PubMedCrossRefGoogle Scholar
  18. Francki, R.I.B.: Plant rhabdoviruses. Adv. Virus Res. 18, 257–345 (1973)CrossRefGoogle Scholar
  19. Gar off, H., Simons, K.: Localization of the spike glycoproteins in the Semliki Forest virus membrane. Proc. Natl. Acad. Sci. U.S.A. 71, 3988–3992 (1974)PubMedCrossRefGoogle Scholar
  20. Gierer, A., Schramm, G.: Die Infektiosität der Ribonukleinsäure des Tabakmosaikvirus. Z. Naturforsch. 11b, 138 (1956)Google Scholar
  21. Hamilton, R.J.: Replication of plant viruses. Annu. Rev. of Phytopathol. 12, 233–245 (1974)Google Scholar
  22. Harrison, S.C., David, A., Jumblatt, J., Darnell, J.E.: Lipid and protein organization in Sindbis virus. J. Mol. Biol. 60, 523–528 (1971)CrossRefGoogle Scholar
  23. Holmes, K.C., Stubbs, G., Mandelkow, E., Warren, S.: Structure of tobacco mosaic virus at 6.7 A resolution. Nature 254, 192–196 (1975)PubMedCrossRefGoogle Scholar
  24. Home, R.W., Waterson, A.P.: A helical structure in mumps, Newcastle disease and Sendai viruses. J. Mol. Biol. 2, 75–77 (1960)CrossRefGoogle Scholar
  25. Hoyle, L., Home, R. W., Waterson, A.P.: The structure and composition of the myxoviruses. II. Components released from the influenza virus particle by ether. Virology 13, 448–459 (1961)PubMedCrossRefGoogle Scholar
  26. Huang, A.S., Baltimore, D., Bratt, M.A.: Ribonucleic acid polymerase in virions of Newcastle disease virus: Comparison with the vesicular stomatitis virus polymerase. J. Virol. 7, 389–394 (1971)PubMedGoogle Scholar
  27. Lebeurier, G., Nicolaieff, A., Richards, K.E.: Inside-out model for self-assembly of tobacco mosaic virus. Proc. Natl. Acad. Sci. U.S.A. 74, 149–153 (1977)PubMedCrossRefGoogle Scholar
  28. Matthews, R.E.F.: Plant Virology. New York: Academic Press 1970Google Scholar
  29. Nakai, T., Howatson, A.F.: The fine structure of vesicular stomatitis virus. Virology 35, 268–281 (1968)PubMedCrossRefGoogle Scholar
  30. Nermuth, M.V., Hermann, F., Schäfer, W.: Properties of mouse leukemia viruses. III. Electron microscopic appearance as revealed after conventional preparation techniques as well as freeze-drying and freeze-etching. Virology 49, 345–358 (1972)CrossRefGoogle Scholar
  31. Penhoet, E., Miller, H., Doyle, M., Blatti, S.: RNA-dependent RNA polymerase activity in influenza virions. Proc. Natl. Acad. Sci. U.S.A. 68, 1369–1371 (1971)PubMedCrossRefGoogle Scholar
  32. Petterson, R.F., von Bonsdorff, C.-H.: Ribonucleoproteins of Unkuniemi virus are circular. J. Virol. 15, 386–392 (1975)Google Scholar
  33. Pfefferkorn, E.R., Shapiro, D.: Reproduction of toga viruses. In: Comprehensive Virology, vol.2. Fraenkel-Conrat, H., Wagner, R.R. (eds.). New York: Plenum Press 1974, p. 171–220Google Scholar
  34. Raghow, R., Kingsbury, D.W.: Endogenous viral enzymes involved in messenger RNA production. Annu. Rev. Microbiol. 30, 21–39 (1976)PubMedCrossRefGoogle Scholar
  35. Ranki, M., Petterson, R.F.: Uukuniemi virus contains an RNA polymerase. J. Virol. 16, 1420–1425 (1975)PubMedGoogle Scholar
  36. Robinson, W.S.: Ribonucleic acid polymerase activity in Sendai virions and nucleocapsids. J. Virol. 8, 81–86 (1971)PubMedGoogle Scholar
  37. Sarkar, N.H., Nowinski, R.C., Moore, D.H.: Helical nucleocapsid structure of the oncogenic ribonucleic acid viruses (Oncornaviruses). J. Virol. 8, 564–572 (1971)PubMedGoogle Scholar
  38. Schwarz, R.T., Scholtissek, C.: Purification and properties of the RNA polymerase-template complex of an influenza virus. Z. Naturforsch. 28, 202–207 (1973)Google Scholar
  39. Stone, H.O., Portner, A., Kingsbury, D.W.: Ribonucleic acid transcriptase in Sendai virions and infected cells. J. Virol. 8, 174–180 (1971)PubMedGoogle Scholar
  40. Temin, H., Mizutani, S.: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213 (1970)PubMedCrossRefGoogle Scholar
  41. Van der Helm, K, Duesberg, P.H.: Translation of Rous sarcoma virus RNA in a cell-free system from ascites Krebs II cells. Proc. Natl. Acad. Sci. U.S.A. 72, 614–618 (1975)PubMedCrossRefGoogle Scholar
  42. Von Bonsdorff, C.-H., Harrison, S.C.: Sindbis virus glycoproteins form a regular icosahedral surface lattice. J. Virol. 16, 141–145 (1975)Google Scholar
  43. Warren, S., Stubbs, G., Holmes, K.C., Mandelkow, E.: Die Struktur des Tabakmosaikvirus bei 4 Ä Auflösung. Hoppe Seyler’s Z. Physiol. Chem. 358, 321 (1977)Google Scholar
  44. Waterson, A.P., Rott, R., Schäfer, W.: The structure of fowl plague virus and virus N. Z. Naturforsch. 16b, 154–156 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Gerd Wengler
    • 1
  1. 1.Institut für VirologieJustus-Liebig-Universität GießenLahn-GießenFederal Republic of Germany

Personalised recommendations