Advertisement

DNA Replication—Bacteriophage Lambda

  • Anna Marie Skalka
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 78)

Abstract

The last thorough review of λ DNA replication was written by Dale Kaiser for the “Lambda Book” in 1971. At this time most of the phage functions (e.g., N, O and P) and some of the bacterial functions (e.g., dnaR) essential for λ replication had been identified. Many structural details concerning circle replication had been elucidated and its origin and bidirectional nature determined electron microscopically. The reader is referred to that article for details and references to the earlier studies on which this knowledge was based. The ensuing years have provided a fuller understanding of many aspects of replication first alluded to in that review, some of them summarized in a general context by Yarmolinsky (1975). This chapter summarizes the basic findings since that time, with particular emphasis on the relationship between early (circle) and late (rolling circle) λ replication, a topic that has been central to the interest of our laboratory for the past several years.

Keywords

Cold Spring Harbor Bacteriophage Lambda Replication Complex Rolling Circle Lytic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhya, S., Gottesman, M., deCrombrugghe, B.: Release of polarity in E. coli by gene N of phage A: termination and antitermination of transcription. Proc. Natl. Acad. Sci. U.S.A. 71, 2534–2538 (1974)PubMedGoogle Scholar
  2. Bastia, D., Sueoka, N., Cox, E.: Studies on the late replication of phage lambda: rolling-circle replication of the wild type and a partially suppressed strain, J. Mol. Biol. 98, 305–320 (1975)PubMedGoogle Scholar
  3. Berg, D.E.: Genes of phage A essential for Xdv plasmids. Virology 62, 224–233 (1974)PubMedGoogle Scholar
  4. Berg, D., Kellenberger-Gujer, G.: N protein causes the Xdv plasmid to inhibit heteroimmune phage Ximm434 growth and stimulates Xdv replication. Virology 62, 234–241 (1974)PubMedGoogle Scholar
  5. Botchan, P.: An electron microscopic comparison of transcription on linear and superhelical DNA. J. Mol. Biol. 105, 161–176 (1976)PubMedGoogle Scholar
  6. Bourgaux, P., Bourgaux-Ramoisy, D.: Unwinding of replicating polyoma virus DNA. J. Mol. Biol. 70, 399–413 (1972)PubMedGoogle Scholar
  7. Brooks, K.: Studies in the physiological genetics of some suppressor-sensitive mutants of bacteriophage X. Virology 26, 489–499 (1965)PubMedGoogle Scholar
  8. Carter, B.J., Smith, M.G.: Intracellular pools of bacteriophage X deoxyribonucleic acid. J. Mol. Biol. 50, 713–718 (1970)PubMedGoogle Scholar
  9. Carter, B.J., Shaw, B.D., Smith, M.G.: Two stages in the replication of bacteriophage X DNA. Biochim. Biophys. Acta, 195, 494–505 (1969)PubMedGoogle Scholar
  10. Dahlberg, J.E., Blattner, F.R.: In vitro transcription products of lambda DNA: Nucleotide sequences and regulatory sites. In: Virus Research. Fox, C.F., Robinson, W.S. (eds.). New York: Academic Press 1973, pp. 533–543Google Scholar
  11. Davidson, N., Szybalski, W.: Physical and chemical characteristics of lambda DNA. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor 1971, pp. 45–82Google Scholar
  12. Dawson, P., Skalka, A., Simon, L.D.: Bacteriophage lambda head morphogenesis: studies on the role of DNA. J. Mol. Biol. 93, 167–183 (1975)PubMedGoogle Scholar
  13. Dawson, P., Hohn, B., Hohn, T., Skalka, A.: Functional empty capside precursors produced by a lambda mutant defective for late X DNA replication. J. Virol. 17, 576–583 (1976)PubMedGoogle Scholar
  14. Dove, W.F.: The genetics of the lambdoid phages. Annu. Rev. Genet. 2, 305–340 (1968)Google Scholar
  15. Dove, W.F., Inokuchi, H., Stevens, W.F.: Replication control in phage lambda. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor 1971, pp. 747–771Google Scholar
  16. Echols, H.: Some unsolved general problems of phage X development. Biochimie 56, 1491–1496 (1974)PubMedGoogle Scholar
  17. Echols, H., Green, L., Oppenheim, A.B., Oppenheim, A., Honigman, A.: Role of the cro gene in bacteriophage X development. J. Mol. Biol. 80, 203–216 (1973)PubMedGoogle Scholar
  18. Eisen, H.A., Fuerst, C.R., Siminovitch, L., Thomas, R., Lambert, L., Pereira Da Silva, L., Jacob, F.: Genetics and physiology of defective lysogeny in K12 (A): studies of early mutants. Virology 30, 224–241 (1966)PubMedGoogle Scholar
  19. Eisen, H., Pereira Da Silva, L.H., Jacob, F.: The regulation and mechanism of DNA synthesis in bacteriophage lambda. Cold Spring Harbor Symp. Quant. Biol. 33, 755–764 (1968)Google Scholar
  20. Eisen, H., Georgiou, M., Georgopoulos, C.P., Selzer, G., Gussin, G., Herskowitz, I.: The role of gene cro in phage development. Virology 68, 266–269 (1975)PubMedGoogle Scholar
  21. Emmons, S.W.: Bacteriophage lambda derivatives carrying two copies of the cohesive end sites. J. Mol. Biol. 83, 511–525 (1974)PubMedGoogle Scholar
  22. Enquist, L.W., Skalka, A.: Replication of bacteriophage X DNA dependent on the function of host and viral genes. I. Interaction of red, gam and rec. J. Mol. Biol. 75, 185–212 (1973)Google Scholar
  23. Feiss, M., Campbell, A.: Duplication of the bacteriophage lambda cohesive end site: genetic studies. J. Mol. Biol. 83, 527–540 (1974)PubMedGoogle Scholar
  24. Filip, C.C., Allen, J.S., Gustafson, R.A., Allen, R.G., Walker, J.R.: Bacterial cell division regulation: characterization of the dnaH locus of Escherichia coli. J. Bacteriol. 119, 443–49 (1974)PubMedGoogle Scholar
  25. Folkmanis, A., Maltzman, W., Mellon, P., Skalka, A., Echols, H.: The essential role of the cro gene in lytic development by bacteriophage X. Virology (1977) (in press)Google Scholar
  26. Franklin, N.C.: Altered reading of genetic signals fused to the N operon of bacteriophage X: Genetic evidence for modification of polymerase by the protein product of the N gene. J. Mol. Biol. 89, 33–48 (1974)PubMedGoogle Scholar
  27. Freif elder, D., Kirschner, I.: A phage X endonuclease controlled by genes O and P. Virology 44, 223–225 (1971)PubMedGoogle Scholar
  28. Freif elder, D., Chud, L., Levine, E.E.: Requirement for maturation of Escherichia coli bacteriophage lambda. J. Mol. Biol. 83, 503–509 (1974)PubMedGoogle Scholar
  29. Gefter, M.: DNA Replication. Annu. Rev. Biochem. 44, 45–78 (1975)PubMedGoogle Scholar
  30. Geider, K.: Molecular aspects of DNA replication in Escherichia coli systems. Curr. Top. Microbiol. Immunol. 74, 55–112 (1976)PubMedGoogle Scholar
  31. Gellert, M., Mizuuchi, K., O’Dea, M.H., Nash, H.: DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. U.S.A. 73, 3872–3876 (1976)PubMedGoogle Scholar
  32. Georgopoulos, C.P., Herskowitz, L: Escherichia coli mutants blocked in lambda DNA synthesis. In: The Bacteriophage Lambda Hershey, A.D. (ed.). New York: Cold Spring Harbor 1971, pp. 553–564Google Scholar
  33. Gilbert, W., Dressler, D.: DNA replication: the rolling circle model. Cold Spring Harbor Symp. Quant. Biol. 33, 473–484 (1968)Google Scholar
  34. Greenstein, M., Skalka, A.: Replication of bacteriophage lambda DNA: In vivo studies of the interaction between the viral gamma protein and the host rec BC DNA. J. Mol. Biol. 97, 543–559 (1975)PubMedGoogle Scholar
  35. Gross, J.D.: DNA replication in Bacteria. Current Topics in Microbiology and Immunology. Berlin: Springer-Verlag 1971, pp. 39–74Google Scholar
  36. Hallick, L., Echols, H.: Genetic and biochemical properties of an association complex between host components and lambda DNA. Virology 52, 105–119 (1973)PubMedGoogle Scholar
  37. Hayes, S.: Positive control of lit, oop transcription and initiation of replication from coliphage lambda. (Manuscript submitted for publication)Google Scholar
  38. Hayes, S., Hayes, C.: Control of X repressor establishment transcription II, kinetics of 1-strand transcription from the y-cll-ori region. (Manuscript in preparation)Google Scholar
  39. Hayes, S., Szybalski, W.: Control of short leftward transcripts from the immunity and ori regions in induced coliphage lambda. Mol. Gen. Genet. 126, 275–390 (1973 a)PubMedGoogle Scholar
  40. Hayes, S., Szybalski, W.: Synthesis of RNA primer for lambda DNA replication is controlled by phage and host. In: Molecular Cytogenetics. Hamkalo, B.A., Papaconstan- tinou, J. (eds.). New York: Plenum Press 1973, pp. 277–283Google Scholar
  41. Hayes, S., Szybalski, W.: Role of oopKNA primer in initiation of coliphage lambda DNA replication. In: DNA Synthesis and Its Regulation. Goulian, M., Hanawalt, P., Fox, C.F. (eds.). Menlo Park: W.A. Benjamin 1975, pp. 486–512Google Scholar
  42. Helinski, D.R., Lovett, M.A., Williams, P.H., Katz, L., Collins, J., Kupersztoch-Portnoy, Y., Sato, S., Leavitt, R.W., Sparks, R., Hershfield, V., Guiney, D.G., Blair, D.G.: Modes of plasmid DNA replication in Escherichia coli. In: DNA Synthesis and Its Regulation. Goulian, M., Hanawalt, P. (eds.). Menlo Park: W.A. Benjamin 1975, pp. 514–536Google Scholar
  43. Hershey, A.D.: Faith and the scientific endeavor. In: The Search for Understanding. Ha-skins, C.P. (ed.). Washington (D.C.): Carnegie Institution 1967, pp. 329–330Google Scholar
  44. Herskowitz, I.: Control of gene expression in bacteriophage lambda. Annu. Rev. Genet. 7, 289–324 (1973)PubMedGoogle Scholar
  45. Hirota, Y, Ryter, A., Jacob, F.: Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harbor Symp. Quant. Biol. 33, 669–676 (1968)Google Scholar
  46. Holloman, W.K., Radding, C.M.: Recombination promoted by superhelical DNA and the recA gene of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 73, 3910–3914 (1976)PubMedGoogle Scholar
  47. Honigman, A.A., Oppenheim, A., Oppenheim, A.B., Stevens, W.: A pleiotropic regulatory mutation in X bacteriophage. Mol. Gen. Genet. 138, 85–111 (1975)PubMedGoogle Scholar
  48. Honigman, A., Hu, S.-L., Chase, R., Szybalski, W.: 4S oopRNA is a leader sequence for the immunity-establishment transcription in coliphage X. Nature (Lond.) 262, 112–116 (1976)Google Scholar
  49. Inman, R.B., Schnös, M.: D-Loops in Intracellular X DNA. In: DNA Synthesis in Vitro. Wells, R.D., Inman, R.B. (eds.). Baltimore: University Park Press 1972, pp. 437–449Google Scholar
  50. Jacob, F., Brenner, S., Cuzin, F.: On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28, 329–348 (1963)Google Scholar
  51. Jaenisch, R., Mayer, A., Levine, A.J.: Replicating SV40 molecules containing closed circular template DNA strands. Nature [New Biol.] 233, 72–75 (1971)Google Scholar
  52. Joyner, A., Isaacs, L., Echols, H., Sly, W.: DNA replication and messenger RNA production after inducation of wild-type X bacteriophage and X mutants. J. Mol. Biol. 19, 174–186 (1966)PubMedGoogle Scholar
  53. Kainuma-Kuroda, R., Okazaki, R.: Mechanisms of chain growth. XII. Asymmetry of replication of P2 phage DNA. J. Mol. Biol. 94, 213–228 (1975)PubMedGoogle Scholar
  54. Kaiser, A.D.: Lambda DNA replication. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor 1971, pp. 195–210Google Scholar
  55. Kaiser, A.D., Syvanen, M., Masuda, T.: DNA packaging steps in bacteriophage lambda head assembly. J. Mol. Biol. 91, 175–186 (1975)PubMedGoogle Scholar
  56. Kleckner, N.E.: Plasmid formation by bacteriophage lambda. Ph.D. thesis, M.I.T., Cambridge, Mass. (1974)Google Scholar
  57. Kleckner, N.: Amber mutants in the O gene of bacteriophage X are not efficiently complemented in the absence of phage TV-function. Virology (submitted for publication) (1976)Google Scholar
  58. Klein, A., Powling, A.: Initiation of X DNA replication in vitro. Nature [New Biol.] 239, 71–73 (1972)Google Scholar
  59. Klinkert, J.: Isolierung und Charakterisierung von Missence-Mutanten im Replikationsgen P des Bacteriophagen Lambda. Staatsexamensarbeit Univ. Heidelberg, West Germany (1975)Google Scholar
  60. Kupersztoch, Y.M., Helinski, D.R.: A catenated DNA molecule as an intermediate in the replication of the resistance transfer factor R6K in Escherichia coli. Biochem. Biophys. Res. Commun. 54, 1451–1459 (1973)PubMedGoogle Scholar
  61. Lark, KG.: Evidence for the direct involvement of RNA in the initiation of DNA replication in Escherichia coli 15T. J. Mol. Biol. 64, 47–60 (1972)PubMedGoogle Scholar
  62. Lieb, M.: X mutants that persist as plasmids. J. Virol. 6, 218–225 (1970)PubMedGoogle Scholar
  63. Lovett, M.A., Sparks, R.B., Helinski, D.R.: Bidirectional replication of plasmid R6K DNA in Escherichia coli; correspondence between origin of replication and position of single- stranded break in relaxed complex. Proc. Natl. Acad. Sci. U.S.A. 72, 2905–2909 (1975)PubMedGoogle Scholar
  64. McClure, S.C.C., Gold, M.: Intermediates in the maturation of bacteriophage DNA. Virology 54, 19–27 (1973)PubMedGoogle Scholar
  65. McClure, S.C.C., MacHattie,L., Gold, M.: A sedimentation analysis of DNA found in Escherichia coli infected with phage X mutants. Virology 54, 1–8 (1973)PubMedGoogle Scholar
  66. McMacken, R., Kessler, S., Boyce, R.: Strand breakage of coliphage X DNA supercoils in infected lysogens. 1. Genetic and biochemical evidence for two types of nicking processes. Virology 66, 356–371 (1975)PubMedGoogle Scholar
  67. Matsubara, K: Interference in bacteriophage growth by a resident plasmid Xdv. II. Role of the promoter operator. J. Virol. 13, 603–607 (1974)PubMedGoogle Scholar
  68. Matsubara, K: Genetic structure and regulation of a replicon of plasmid Xdv. J. Mol. Biol. 102, 427–439 (1976)PubMedGoogle Scholar
  69. Molineux, I.J., Friedman, S., Gefter, M.L.: Purification and properties of the Escherichia coli deoxyribonucleic acid-unwinding protein. Effects on deoxyribonucleic acid synthesis in vitro. J. Biol. Chem. 249, 6090–6098 (1974)PubMedGoogle Scholar
  70. Muriaido, H.: Restriction in the numbers of infecting lambda phage genomes that can participate in intracellular growth. Virology 60, 128–138 (1974)Google Scholar
  71. Nash, H.A., Mizuuchi, K, Weisberg, R.A., Kikuchi, Y., Geliert, M.: Integrative recombination of bacteriophage A-the biochemical approach to DNA insertions. In: DNA Insertion Elements, Plasmids and Episomes. Bukhari, A.I., Shapiro, J., Adhya, S. (eds.). New York: Cold Spring Harbor 1976Google Scholar
  72. Novick, R.P., Smith, K, Sheehy, R.J., Murphy, E.: A catenated intermediate in plasmid replication. Biochem. Biophys. Res. Commun. 54, 1460–1469 (1973)PubMedGoogle Scholar
  73. Nusslein, V., Klein, A.: In: Methods in Molecular Biology. Wickner, R.B. (ed.). New York: Marcel Dekker 1974, Vol. VIIGoogle Scholar
  74. Ogawa, T.: Analysis of the dnaB function of Escherichia coli Kl 2 and the foaB-like function of PI prophage. J. Mol. Biol. 94, 327–340 (1975)PubMedGoogle Scholar
  75. Ogawa, T., Tomizawa, J.-L.: Replication of bacteriophage DNA. I. Replication of DNA of lambda phage defective in early functions. J. Mol. Biol. 38, 217–225 (1968)Google Scholar
  76. Olivera, B.M., Bonhoeffer, F.: Discontinuous DNA replication in vitro: I. Two distinct size classes of intermediates. Nature [New Biol.] 240, 233–235 (1972)Google Scholar
  77. Oppenheim, A., Katzir, N., Oppenheim, A.B.: The product of gene P of coliphage X. Virology (1976) (Submitted for publication)Google Scholar
  78. Pirrotta, V.: The X repressor and its action. Curr. Top. Microbiol. Immunol. 74, 21–54 (1976)PubMedGoogle Scholar
  79. Pritchard, RH., Barth, P.T., Collins, J.: Control of DNA Synthesis in Bacteria. Symp. Soc. Gen. Microbiol. 19, 263–297 (1967)Google Scholar
  80. Radding, C.M.: Molecular mechanisms in genetic recombination. Annu. Rev. Genet. 7, 87–111 (1973)PubMedGoogle Scholar
  81. Rambach, A.: Replicator mutants of bacteriophage X: characterization of two subclases. Virology 54, 270–277 (1973)PubMedGoogle Scholar
  82. Reichardt, L.F.: Control of bacteriophage lambda repressor synthesis after phage infection: the role of the N, ell, cIII and cro products. J. Mol. Biol. 93, 267–288 (1975)PubMedGoogle Scholar
  83. Reichardt, L., Kaiser, A.D.: Control of X repressor synthesis. Proc. Natl. Acad. Sci. U.S.A. 68, 2185–2189 (1971)PubMedGoogle Scholar
  84. Reuben, R., Gefter, M., Enquist, L.W., Skalka, A.: New method for large scale preparation of covalently closed X DNA molecules. J. Virol. 14, 1104–1107 (1974)PubMedGoogle Scholar
  85. Reuben, R., Skalka, A.: Identification of the site of interruption in relaxed circles produced during bacteriophage lambda DNA circle replication. J. Virol. (1977) (in press)Google Scholar
  86. Roberts, J.: Termination factor for RNA synthesis. Nature (Lond.) 224, 1168–1174 (1969)Google Scholar
  87. Roberts, J.W., Roberts, C., Hilliker, S., Botstein, D.: Transcription termination and regulation in bacteriophages P22 and lambda. In: RNA Polymerase. Losick, R., Chamberlin, M. (eds.). New York: Cold Spring Harbor 1976, pp. 707–718Google Scholar
  88. Rosenberg, M., Weissman, S., DECrombrugghe, B.: Termination of transcription in bacteriophage X. Heterogenous, 3, -terminal oligo-adenylate additions and the effects of p factor. J. Biol. Chem. 250, 4755–4764 (1975)PubMedGoogle Scholar
  89. Ross, D.G., Freifelder, D.: Maturation of a single X phage particle from a dimeric circular X DNA. Virology 74, 414–425 (1976)PubMedGoogle Scholar
  90. Saito, H., Uchida, H.: Initiation of the DNA replication of bacteriophage lambda. J. Mol. Biol. (1977) (in press)Google Scholar
  91. Sakaki, Y., Karu, A.E., Linn, S., Echols, H.: Purification and properties of the y-protein specified by bacteriophage X: an inhibitor of the host recBC recombination enzyme. Proc. Natl. Acad. Sci. U.S.A. 70, 2215–2219 (1973)PubMedGoogle Scholar
  92. Salivar, W.O., Sinsheimer, R.L.: Intracellular location and number of replicating parental DNA molecules of bacteriophage lambda and X174. J. Mol. Biol. 41, 39–65 (1969)PubMedGoogle Scholar
  93. Sarthy, V.P., Meselson, M.: Single burst study of rec- and red- mediated recombination in bacteriophage lambda. Proc. Natl. Acad. Sci. U.S.A. 73, 4613–4617 (1976)PubMedGoogle Scholar
  94. Scherer, G., Hobom, G., Kossel, H.: DNA base sequences of the PD promotor region of phage X. Nature (Lond.) (1977) (in press)Google Scholar
  95. Schnds, M., Inman, R.B.: Position of branch points in replicating X DNA. J. Mol. Biol. 51, 61–73 (1970)Google Scholar
  96. Sebring, E.D., Kelly, Jr., T.J., Thoren, M.M., Salzman, N.P.: Structure of replicating simian virus 40 deoxyribonucleic acid molecules. J. Virol. 8, 478–90 (1971)PubMedGoogle Scholar
  97. Shizuya, H., Richardson, C.C.: Synthesis of bacteriophage lambda DNA in vitro: requirement for O and P gene products. Proc. Natl. Acad. Sci. U.S.A. 71, 1758–1762 (1974)PubMedGoogle Scholar
  98. Shuster, R.C., Weissbach, A.: Genetic mapping of an endonuclease synthesized by bacteriophage lambda. Nature 223, 852–853 (1969)PubMedGoogle Scholar
  99. Sigal, N., Delius, H., Romberg, T., Gefter, M.L., Alberts, B.: A DNA-unwinding protein isolated from Escherichia coli: Its interaction with DNA and with DNA polymerases. Proc. Natl. Acad. Sci. U.S.A. 69, 3537–3541 (1972)PubMedGoogle Scholar
  100. Signer, E.R.: Plasmid formation: a new mode of lysogeny by phage X. Nature (Lond.) 223, 158–160 (1969)Google Scholar
  101. Simon, L.D.: Infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope: T4 head morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 69, 907–911 (1972)PubMedGoogle Scholar
  102. Skalka, A.: Origin of DNA concatemers during growth (of lambda). In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor 1971, p. 535Google Scholar
  103. Skalka, A.: A replicator’s view of recombination (and repair). In: Mechanisms in Recombination. Grell, R.F. (ed.). New York: Plenum Publishing 1974, pp. 421–32Google Scholar
  104. Skalka, A., Enquist, L.W.: Overlapping pathways for replication, recombination and repair in bacteriophage lambda. In: Mechanism and Regulation of DNA Replication. Kolber, A.R., Kohiyama, M. (eds.). New York: Plenum Press 1974, pp. 181–200Google Scholar
  105. Skalka, A., Poonian, M., Bart I, P.: Concatemers in DNA replication: electron microscopic studies of partially denatured intracellular lambda DNA. J. Mol. Biol. 64, 541–550 (1972)PubMedGoogle Scholar
  106. Skalka, A., Greenstein, M., Reuben, R: Molecular mechanisms in the Control of A DNA replication: Interaction between phage and host functions. In: DNA Synthesis and Its Regulation. Goulian, M., Hanawalt, P. (eds.). Menlo Park: W.A. Benjamin 1975, pp. 460–485.Google Scholar
  107. Smith, G.R., Hedgepeth, J.: Oligo (A) not coded by DNA generating S’-terminal heteroge-niety in a A phage RNA. J. Biol. Chem. 250, 4818–4824 (1975)PubMedGoogle Scholar
  108. Smith, M.G., Skalka, A.: Some properties of DNA from phage-infected bacteria. J. Gen. Physiol. 49, Suppl. 2, 127 (1966)Google Scholar
  109. Sogo, J.M., Greenstein, M., Skalka, A.: The circle mode of replication of bacteriophage lambda: the role of covalently closed templates and the formation of mixed catenated dimers. J. Mol. Biol. 103, 537–562 (1976)PubMedGoogle Scholar
  110. Sompayrac, L., Maaloe, O.: Autorepressor model for control of DNA replication. Nature [New Biol.] 241, 133–135 (1973)Google Scholar
  111. Spiegelman, W.G., Reichardt, L.F., Yaniv, M., Heinemann, S.F., Kaiser, A.D., Eisen, H.: Bidirectional transcription and the regulation of phage A repressor synthesis. Proc. Natl. Acad. Sci. U.S.A. 69, 3156–3160 (1972)PubMedGoogle Scholar
  112. Stahl, F., Stahl, M.: Red-mediated recombination in bacteriophage lambda. In: Mechanisms in Recombination Grell, R.F. (ed.). New York: Plenum Press 1974, pp. 407–419Google Scholar
  113. Stahl, F.W., McMilin, KD., Stahl, M., Malone, RE., Nozu, Y.: A role for recombination in the production of “free-loader” lambda bacteriophage particles. J. Mol. Biol. 68, 57–67 (1972)PubMedGoogle Scholar
  114. Stahl, F.W., McMilin, K.D., Stahl, M.M., Crasemann, J.M., Lam, S.: The distribution of crossovers along unreplicated lambda bacteriophage chromosomes. Genetics 77, 395–408 (1974)PubMedGoogle Scholar
  115. Sternberg, N., Weisberg, R: Packaging of prophage and host DNA by coliphage A. Nature (Lond.) 256, 97–103 (1976)Google Scholar
  116. Stevens, W.F., Adhya, S., Szybalski, W.: Origin and bidirectional orientation of DNA replication in coliphage lambda. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor 1971, pp. 515–533Google Scholar
  117. Syvanen, M.: In vitro genetic recombination of bacteriophage A. Proc. Natl. Acad. Sci. 71, 2496–2499 (1974)PubMedGoogle Scholar
  118. Szybalski, W.: Initiation and regulation of transcription and DNA replication in coliphage lambda. In: Regulatory Biology, Copeland, J.C., Marzluf, G.A. (eds.). Columbus: Ohio State University Press 1977Google Scholar
  119. Takahashi, S.: The Rolling-Circle replicative structure of a bacteriophage A DNA. Biochem.Biophys. Res. Comm. 61, 607–613 (1974)Google Scholar
  120. Takahashi, S.: Role of genes O and P in the replication of bacteriophage A DNA. J. Mol. Biol. 94, 385–396 (1975)PubMedGoogle Scholar
  121. Takano, T.: Bacterial mutants defective in plasmid formation: requirement for the lon + allele. Proc. Natl. Acad. Sci. U.S.A. 68, 1469–1473 (1971)PubMedGoogle Scholar
  122. Thirion, J.P.: Etude cinétique du contrôle génétique des différents formes d’ADN de A après infection. Ann. Inst. Pasteur Lille 120, 453–465 (1971)Google Scholar
  123. Thomas, R.: Control circuits. In: The Bacteriophage Lambda. Hershey, A.D. (Ed.). New York: Cold Spring Harbor 1971, pp. 211–220Google Scholar
  124. Thomas, R., Bertani, L.E.: On the control of the replication of temperate bacteriophages superinfecting immune hosts. Virology 24, 241–253 (1964)PubMedGoogle Scholar
  125. Tomizawa, J.-I.: Functional cooperation of genes O and P. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor 1971, pp. 549–552Google Scholar
  126. Tomizawa, J.-I., Ogawa, S.: Replication of phage lambda DNA. Cold Spring Harbor Symp. Quant. Biol. 33, 533–551 (1968)Google Scholar
  127. Valenzuela, M.S., Freifelder, D., Inman, R.B.: Lack of a unique termination site for the first round of bacteriophage lambda DNA replication. J. Mol. Biol. 102, 569–589 (1976)PubMedGoogle Scholar
  128. Wake, R.G., Kaiser, A.D., Inman, R.B.: Isolation and structure of phage A head-mutant DNA. J. Mol. Biol. 64, 519–540 (1972)PubMedGoogle Scholar
  129. Wang, J.C., Brezinski, D.P.: Alignment of two DNA helices: A model for recognition of DNA base sequences by the termini-generating enzymes of phage A, 186, and P2. Proc. Natl. Acad. Sci. U.S.A. 70, 2667–2670 (1973)PubMedGoogle Scholar
  130. Wechsler, J.A.: Genetic and phenotypic characterization of dnaC mutations. J. Bacteriol. 121, 594–599 (1975)PubMedGoogle Scholar
  131. Weissbach, A., Bartl, P., Salzman, L.A.: The structure of replicative lambda DNA-Electron microscope studies. Cold Spring Harbor Symp. Quant. Biol. 33, 525–531 (1968)Google Scholar
  132. White, R.L., Fox, M.S.: On the molecular basis of high negative inference. Proc. Natl. Acad. Sci. U.S.A. 71, 1544–1548 (1974)PubMedGoogle Scholar
  133. Wickner, S., Hurwitz, J.: Interaction of Escherichia coli dnaB and dnaC (D) gene products in vitro. Proc. Natl. Acad. Sci. U.S.A. 72, 921–925 (1975)PubMedGoogle Scholar
  134. Wickner, S., Wright, M., Hurwitz, J.: Association of DNA-dependent and independent ribonucleoside triphosphatase activities with dnaB gene product of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 71, 783–787 (1974)PubMedGoogle Scholar
  135. Wilkins, A.S., Mistry, J.: Phage Lambda’s generalized recombination system. Mol. Gen. Genet. 129, 275–293 (1974)PubMedGoogle Scholar
  136. Wor eel, A., Burgi, E.: On the structure of the folded chromosome of Escherichia coli. J. Mol. Biol. 71, 127–147 (1972)Google Scholar
  137. Wright, M., Buttin, G., Hurwitz, J.: The isolation and characterization from Escherichia coli of an adenosine triphosphate-dependent deoxyribonuclease directed by recB, C genes. J. Biol. Chem. 246, 6543–6555 (1971)PubMedGoogle Scholar
  138. Wyatt, W.M., Inokuchi, H.: Stability of lambda O and P replication functions. Virology 58, 313–315 (1974) Yarmolinsky, M.B.: Some genetic controls on the replication and segregation of temperate coliphages. Genetics 79, 229–245 (1975)Google Scholar
  139. Yates, J., Gette, W., Furth, M., Nomura, M.: Effects of ribosomal mutations on the read- through of a chain termination signal: studies on the synthesis of bacteriophage X O gene protein in vitro. Proc. Natl. Acad. Sci. U.S.A. (1977) (in press)Google Scholar
  140. Zissler, J., Signer, E., Schaefer, F.: The role of recombination in growth of bacteriophage lambda I. the gamma gene. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor 1971, pp. 455–469Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Anna Marie Skalka
    • 1
  1. 1.Roche Institute of Molecular BiologyNutleyUSA

Personalised recommendations