Advertisement

Integration and Excision of Bacteriophage λ

  • Howard A. Nash
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 78)

Abstract

Coliphage λ is a temperate virus. A fraction of λ infected bacterial cells survive, and some of the survivors become lysogens. Lysogens are bacteria that have stably acquired two new properties, i.e., immunity to infection by a further challenge of virus and the capacity to produce infective virus. The new properties reflect the presence of λ prophage, the genome of λ virus as it occurs in lysogens. Lysogenization, the establishment of the prophage-containing state, was recognized early to depend on two potentially independent processes. First, lytic growth of the virus must be prevented or the infected cell will die. This process is accomplished primarily by λ repressor whose molecular basis of action and role in lysogeny are described in detail in recent reviews (Pirrotta, 1976); Ptashne et al., 1976). Second, the prophage must be made to replicate in parity with the host genome. For lysogens of phage λ, this is accomplished by the insertion of the entire viral genome into the host genome, forming a single continuous chromosome in which the viral DNA is replicated as part of the host genome.

Keywords

Attachment Site Cold Spring Harbor Laboratory Recognition Element Bacteriophage Lambda Transduce Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhya, S., Gottesman, M., De Crombrugghe, B., Court, D.: Transcription termination regulates gene expression. In: RNA Polymerase. New York: Cold Spring Harbor Laboratory 1976, pp. 719–730Google Scholar
  2. Ausubel, F.: Radiochemical purification of bacteriophage lambda integrase. Nature 247, 152–154 (1974)PubMedGoogle Scholar
  3. Ausubel, F., Voynow, P., Signer, E., Mis try, J.: Purification of proteins determined by two nonessential genes in lambda. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 395–405Google Scholar
  4. Botchan, P.: An electron microscopic comparison of transcription on linear and superhelical DNA. J. Mol. Biol. 105, 161–176 (1976)PubMedGoogle Scholar
  5. Brack, C., Bickle, T.A., Yuan, R.: The relation of single-stranded regions in bacteriophage PM2 supercoiled DNA to the early melting sequences. J. Mol. Biol. 96, 693–702 (1975)PubMedGoogle Scholar
  6. Campbell, A.M.: Episomes. Adv. Genet. 11, 101–145 (1962)Google Scholar
  7. Campbell, A.M.: Episomes. New York: Harper & Row 1969, pp. 81–94, 99–113Google Scholar
  8. Campbell, A.M.: How viruses insert their DNA into the DNA of the host cell. Sci. Am. 235, 103–113 (1976a)Google Scholar
  9. Campbell, A.M.: Significance of constitutive integrase synthesis. Proc. Natl. Acad. Sci. U.S.A. 73, 887–890 (1976b)PubMedGoogle Scholar
  10. Campbell, A., Hefferman, L., Hu, S., Szybalski, W.: The integrase promoter of bacteriophage lambda. In: Plasmids, DNA Insertion Elements and Episomes.Shapiro, J., Bukhari, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory, 1977, pp. 375–379Google Scholar
  11. Chung, S., Echols, H.: Positive regulation of integrative recombination by the ell and cIII genes of bacteriophage X. Virology 79, 312–319 (1977)PubMedGoogle Scholar
  12. Court, D., Adhya, S., Nash, H., Enquist, L.: The phage X integration protein (Int) is subject to control by the ell and cIII gene products. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhari, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977, pp. 389–394Google Scholar
  13. Crick, F.H.C., Klug, A.: Kinky helix. Nature 255, 530–533 (1975)Google Scholar
  14. Davis, R.W., Parkinson, J.S.: Deletion mutants of bacteriophage lambda. III. Physical structure of att. J. Mol. Biol. 56, 403–423 (1971)PubMedGoogle Scholar
  15. Davies, R.W., Dove, W.F., Inokuchi, H., Lehman, J.F., Roehrdanz, R.L.: Regulation of X prophage excision by the transcriptional state of DNA. Nature [New Biol.] 238, 43–45 (1972)Google Scholar
  16. Dickson, R.C., Abelson, J., Barnes, W.M., Reznikoff, W.S.: Genetic regulation: The Lac control region. Science 187, 27–35 (1975)PubMedGoogle Scholar
  17. Doerfler, W.: Integration of viral DNA into the host genome. Curr. Top. Microbiol. Immunol. 71, 1–78 (1975)PubMedGoogle Scholar
  18. Dove, W.F.: An energy-level hypothesis for X prophage insertion and excision. J. Mol. Biol. 47, 585–589 (1970)PubMedGoogle Scholar
  19. Echols, H.: Integrative and excisive recombination by bacteriophage X: Evidence for an excision-specific recombination protein. J. Mol. Biol. 47, 575–583 (1970)PubMedGoogle Scholar
  20. Echols, H.: Constitutive integrative recombination by bacteriophage X. Virology 64, 557–559 (1975)PubMedGoogle Scholar
  21. Echols, H., Green, L.: Establishment and maintenance of repression by bacteriophage lambda: The role of the el, cII, and cIII proteins. Proc. Natl. Acad. Sci. U.S.A. 68, 2190–2194 (1971)PubMedGoogle Scholar
  22. Echols, H., Gingery, R., Moore, L.: Integrative recombination function of bacteriophage X: Evidence for a site-specific recombination enzyme. J. Mol. Biol. 34, 251–260 (1968)PubMedGoogle Scholar
  23. Echols, H., Chung, S., Green, L.: Site-specific recombination: Genes and regulation. In: Mechanisms in Recombination. Grell, R.F. (ed.). New York: Plenum Press 1974, pp. 69–77Google Scholar
  24. Eisen, H., Brachet, P., Pereita da Silva, L., Jacob, F.: Regulation of repressor expression in X. Proc. Natl. Acad. Sci. U.S.A. 66, 855–862 (1970)PubMedGoogle Scholar
  25. Engler, J., Inman, R.B.: Site-specific recombination in bacteriophage lambda. J. Mol. Biol. 113, 385–400 (1977)PubMedGoogle Scholar
  26. Enquist, L.W., Skalka, A.: Replication of bacteriophage X DNA dependent on the function of host and viral genes. J. Mol. Biol. 75, 185–212 (1973)PubMedGoogle Scholar
  27. Enquist, L.W., Weisberg, R.A.: The red plaque test: A rapid method for identification of excision defective variants of bacteriophage lambda. Virology 72, 147–153 (1976)PubMedGoogle Scholar
  28. Enquist, L.W., Weisberg, R.A.: A genetic analysis of the att-int-xis region of coliphage lambda. J. Mol. Biol. III, 97–120 (1977a)Google Scholar
  29. Enquist, L.W., Weisberg, R.A.: Flexibility in attachment site recognition by X integrase. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhari, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977b, pp. 343–348Google Scholar
  30. Fiandt, M., Gottesman, M.E., Shulman, M.J., Szybalski, E.H., Szybalski, W., Weisberg, R.A.: Physical mapping of coliphage Xatt2. Virology 72, 6–12 (1976)PubMedGoogle Scholar
  31. Folkmanis, A., Freifelder, D.: Studies on lysogeny in Escherichia coli with bacteriophage. X. Physical observation of the insertion process. J. Mol. Biol. 65, 63–73 (1972)Google Scholar
  32. Freif elder, D., Levine, E.E.: Requirement for transcription in the neighborhood of the phage attachment region for lysogenization of Escherichia coli by bacteriophage X. J. Mol. Biol. 74, 729–733 (1973)PubMedGoogle Scholar
  33. Freifelder, D., Meselson, M.: Topological relationship of prophage X to the bacterial chromosome in lysogenic cells. Proc. Natl. Acad. Sci. U.S.A. 65, 200–205 (1970)PubMedGoogle Scholar
  34. Freifelder, D., Kirschner, I., Goldstein, R., Baran, N.: Physical study of prophage excision and curing of X prophage from lysogenic Escherichia coli. J. Mol. Biol. 74, 703–720 (1973)PubMedGoogle Scholar
  35. Freifelder, D., Baran, N., Chud, L., Folkmanis, A., Levine, E.E.: Requirements for insertion of bacteriophage DNA into the DNA of Escherichia coli. J. Mol. Biol. 91, 401–408 (1975)PubMedGoogle Scholar
  36. Gellert, M., Mizuuchi, K, O’Dea, M.H., Nash, H.A.: DNA gyraseGellert, M.F O’Dea, M.H., Itoh, T To miz aw a, J.; Novobiocin and courmermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. U.S.A. 73, 4474–4478 (1976b)PubMedGoogle Scholar
  37. Gingery, R, Echols, H.: Mutants of bacteriophage X unable to integrate into the host chromosome. Proc. Natl. Acad. Sci. U.S.A. 58, 1507–1514 (1967)PubMedGoogle Scholar
  38. Goldberg, A.L., St. John, A.C.: Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annual Review of Biochem. 45, 747–803 (1976)Google Scholar
  39. Gottesman, M.E., Weisberg, R.A.: Prophage insertion and excision. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 113–138Google Scholar
  40. Gottesman, M.E., Yarmolinsky, M.B.: Integration-negative mutants of bacteriophage lambda. J. Mol. Biol. 31, 487–505 (1968)PubMedGoogle Scholar
  41. Gottesman, S., Gottesman, M.E.: Elements involved in site-specific recombination in bacteriophage lambda. J. Mol. Biol. 91, 489–499 (1975a)PubMedGoogle Scholar
  42. Gottesman, S., Gottesman, M.: Excision of prophage A in a cell-free system. Proc. Natl. Acad. Sci. U.S.A. 72, 2188–2192 (1975b)PubMedGoogle Scholar
  43. Guarneros, G., Echols, H.: New mutants of bacteriophage X with a specific defect in excision from the host chromosome. J. Mol. Biol. 47, 565–574 (1970)PubMedGoogle Scholar
  44. Guarneros, G., Echols, H.: Thermal asymmetry of site-specific recombination by bacteriophage X. Virology 52, 30–38 (1973)PubMedGoogle Scholar
  45. Henderson, D., Weil, J.: A mutant of Escherichia coli that prevents growth of phage lambda and is bypassed by lambda mutants in a nonessential region of the genome. Virology 71, 546–559 (1976)PubMedGoogle Scholar
  46. Hendrix, R. W.: Identification of proteins coded in phage lambda. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 355–370Google Scholar
  47. Honigman, A., Hu, S.-L., Chase, R., Szybalski, W.: 4S oop RNA is a leader sequence for the immunity-establishment transcription in coliphage X. Nature 262, 112–116 (1976)PubMedGoogle Scholar
  48. Hradecna, Z., Szybalski, W.: Electron micrographic maps of deletions and substitutions in the genomes of transducing coliphages Adg and Abio. Virology 38, 473–466 (1969)PubMedGoogle Scholar
  49. Huskey, R.J.: Deletion mutants of bacteriophage lambda. IV. High frequency int-promoted recombination. Mol. Gen. Genet. 127, 39–46 (1973)PubMedGoogle Scholar
  50. Inman, R.B., Schnos, M.: Partial denaturation of thymine- and 5-bromouracil containing X DNA in alkali. J. Mol. Biol. 49, 93–98 (1970)PubMedGoogle Scholar
  51. Inokuchi, H., Dove, W.F., Freifelder, D.: Physical studies of RNA involvement in bacteriophage ADNA replication and prophage excision. J. Mol. Biol. 74, 721–727 (1973)PubMedGoogle Scholar
  52. Jovin, T.M.: Recognition mechanisms of DNA-specific enzymes. Annu. Rev. Biochem. 45, 889–920 (1976)PubMedGoogle Scholar
  53. Kamp, D.: In vitro Untersuchung der Integrase des Bakteriophagen A. Thesis, University of Cologne, 1973Google Scholar
  54. Kaiser, A.D., Masuda, T.: Evidence for a prophage excision gene in X. J. Mol. Biol. 47, 557–564 (1970)PubMedGoogle Scholar
  55. Kaiser, A.D., Wu, R.: Structure and function of DNA cohesive ends. Cold Spring Harbor Symp. Quant. Biol. 33, 729–734 (1968)Google Scholar
  56. Katzir, N., Oppenheim, A., Belfort, M., Oppenheim, A.B.: Activation of the lambda int gene by the ell and cIII gene products. Virology 74, 324–331 (1976)PubMedGoogle Scholar
  57. Kotewicz, M., Cuhng, S., Takeda, Y., Echols, H.: Characterization of the integration protein of bacteriophage A as a site-specific DNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 74, 1511–1515 (1977)PubMedGoogle Scholar
  58. Kourilsky, P.: Lysogenization by bacteriophage lambda and the regulation of lambda repressor synthesis. Virology 45, 853–857 (1971)PubMedGoogle Scholar
  59. Kourilsky, P.: Lysogenization by bacteriophage lambda. II. Identification of genes involved in the multiplicity dependent processes. Biochimie 56, 1511–1516 (1974)PubMedGoogle Scholar
  60. Kourilsky, P., Knapp, A.: Lysogenization by bacteriophage lambda. III. Multiplicity dependent phenomena occurring upon infection by lambda. Biochimie 56, 1517–1523 (1974)PubMedGoogle Scholar
  61. Kourilsky, P., Boürguignon, M.-F., Gros, F.: Kinetics of viral transcription after induction of prophage. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 647–666.Google Scholar
  62. Landy, A., Ross, W.: Viral integration and excision: structure of the lambda att sites. Science 197, 1147–1160 (1977)PubMedGoogle Scholar
  63. Lehman, J.F.: X site-specific recombination: Local transcription and an inhibitor specified by the b2 region. Mol. Gen. Genet. 130, 333–344 (1974)PubMedGoogle Scholar
  64. Manly, K.F., Signer, E.R., Radding, C.M.: Nonessential functions of bacteriophage X. Virology 37, 177–188 (1969)PubMedGoogle Scholar
  65. Miller, H.I., Friedman, D.I.: Isolation of Escherichia coli mutants unable to support lambda integrative recombination. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhori, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977, pp. 349–356Google Scholar
  66. Mizuuchi, K, Nash, H.A.: Restriction assay for integrative recombination of bacteriophage X DNA in vitro: Requirement for closed circular DNA substrate. Proc. Natl. Acad. Sci. U.S.A. 73, 3524–3528 (1976)PubMedGoogle Scholar
  67. Mizuuchi, K., Gellert, M., Nash, H.: (in preparation) (1977)Google Scholar
  68. Nash, H.A.: XattB-attP, A X derivative containing both sites involved in integrative recombination. Virology 57, 207–216 (1974a)PubMedGoogle Scholar
  69. Nash, H.A.: Purification of bacteriophage X int protein. Nature 247, 543–545 (1974b)PubMedGoogle Scholar
  70. Nash, H.A.: Integrative recombination in bacteriophage lambda: Analysis of recombinant DNA. J. Mol. Biol. 91, 501–514 (1975a)PubMedGoogle Scholar
  71. Nash, H.A.: Integrative recombination of bacteriophage lambda DNA in vitro. Proc. Natl. Acad. Sci. U.S.A. 72, 1072–1076 (1975b)PubMedGoogle Scholar
  72. Nash, H.A., Merril, C.R.: DNA of biotin-transducing X bacteriophage. J. Mol. Biol. 43, 357–359 (1969)PubMedGoogle Scholar
  73. Nash, H.A., Enquist, L., Weisberg, R.: On the role of the bacteriophage X int gene product in site specific recombination. J. Mol. Biol. 115, in press (1977 a)Google Scholar
  74. Nash, H.A., Mizuuchi, K, Weisberg, R., Kikuchi, Y., Gellert, M.: Integrative recombination of bacteriophage A-The biochemical approach to DNA insertions. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhori, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977 b, pp. 363–373Google Scholar
  75. Oppenheim, A.B., Katzir, N., Oppenheim, A.: Regulation of protein synthesis in bacteriophage A: Restoration of gene expression in XN~ strains by mutations in the cro gene. Virology 79, 405–425 (1977)PubMedGoogle Scholar
  76. Parkinson, J.S.: Deletion mutants of bacteriophage lambda. II. Genetic properties of attdefective mutants. J. Mol. Biol. 56, 385–101 (1976)Google Scholar
  77. Pilacinski, W., Mosharrafa, E., Edmundson, R., Zissler, J., Fiandt, M., Szybalski, W.: Insertion sequence IS2 associated with constitutive mutants of bacteriophage lambda. Gene 2, in press (1977)Google Scholar
  78. Pirrotta, V.: The A repressor and its action. Curr. Top. Microbiol. Immunol. 74, 21–54 (1976)PubMedGoogle Scholar
  79. Ptashne, M., Backman, K, Humayun, M.Z., Jeffrey, A., Maurer, R., Meyer, B., Sauer, R.T.: Auto regulation and function of a repressor in bacteriophage lambda. Science 194, 156–161 (1976)PubMedGoogle Scholar
  80. Ray, U., Skalka, A.: Lysogenization of Escherichia coli by bacteriophage lambda: Complementary activity of the host’s DNA polymerase I and ligase and phage replication proteins O and P. J. Virol. 18, 511–517 (1976)PubMedGoogle Scholar
  81. Reichardt, L., Kaiser, A.D.: Control of A repressor synthesis. Proc. Natl. Acad. Sci. U.S.A. 68, 2185–2189 (1971)PubMedGoogle Scholar
  82. Roehrdanz, R.L., Dove, W.F.: Studies of the stimulation by helper of A site-specific recombination in lytic crosses. Virology 79, 32–39 (1977a)PubMedGoogle Scholar
  83. Roehrdanz, R.L., Dove, W.F.: A factor in the b2 region affecting site-specific recombinations in lambda. Virology 79, 40–49 (1977b)PubMedGoogle Scholar
  84. Ryan, M.J.: Coumermycin Ax: A preferential inhibitor of replicative DNA synthesis in Escherichia coli. I. In vivo characterization. Biochemistry 15, 3769–3777 (1976)Google Scholar
  85. Sadowski, P.D., Vetter, D.: Genetic recombination of bacteriophage T7 DNA in vitro. Proc. Natl. Acad. Sci. U.S.A. 73, 692–696 (1976)PubMedGoogle Scholar
  86. Schuster, H., Beyersmann, D., Mikolajczyk, M., Schlicht, M.: Prophage induction by high temperature in thermosensitive dna mutants lysogenic for bacteriophage lambda. J. Virology 11, 879–885 (1973)PubMedGoogle Scholar
  87. Sharp, P.A., Hsu, M.-T., Davidson, N.: Note on the structure of prophage A. J. Mol. Biol. 71, 499–501 (1972)PubMedGoogle Scholar
  88. Shimada, K, Campbell, A.: Int-constitutive mutants of bacteriophage lambda. Proc. Natl. Acad. Sci. U.S.A. 71, 237–241 (1974a)PubMedGoogle Scholar
  89. Shimada, K, Campbell, A.: Lysogenization and curing by int-constitutive mutants of phage A. Virology 60, 157–165 (1974b)PubMedGoogle Scholar
  90. Shimada, K, Weisberg, R.A., Gottesman, M.E.: Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens J. Mol. Biol. 63, 483–503 (1972)PubMedGoogle Scholar
  91. Shimada, K, Weisberg, R.A., Gottesman, M.E.: Prophage lambda at unusual chromosomal locations. II. Mutations induced by bacteriophage lambda in Escherichia coli K12. J. Mol. Biol. 80, 297–314 (1973)PubMedGoogle Scholar
  92. Shimada, K, Weisberg, R.A., Gottesman, M.E.: Prophage lambda at unusual chromosomal locations. III. The components of the secondary attachment sites. J. Mol. Biol. 93, 415–429 (1975)PubMedGoogle Scholar
  93. Shulman, M., Gottesman, M.: Lambda att2: a transducing phage capable of intramolecular int-xis promoted recombination. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 477–487Google Scholar
  94. Shulman, M., Gottesman, M.: Attachment site mutants of bacteriophage lambda. J. Mol. Biol. 81, 461–482 (1973)PubMedGoogle Scholar
  95. Shulman, M.J., Mizuuchi, K, Gottesman, M.M.: New att mutants of phage A. Virology 72, 13–22 (1976)PubMedGoogle Scholar
  96. Signer, E.R.: On the control of lysogeny in phage A. Virology 40, 624–633 (1970)PubMedGoogle Scholar
  97. Signer, E.R., Weil, J., Kimball, P.C.: Recombination in bacteriophage A. III. Studies on the nature of the prophage attachment region. J. Mol. Biol. 46, 543–563 (1969)PubMedGoogle Scholar
  98. Skalka, A., Burgi, E., Hershey, A.D.: Segmental distribution of nucleotides in the DNA of bacteriophage lambda. J. Mol. Biol. 34, 1–16 (1968)PubMedGoogle Scholar
  99. Smith, D.H., Davis, B.D.: Mode of action of novobiocin in Escherichia coli. J. Bacteriol. 93, 71–79 (1967)PubMedGoogle Scholar
  100. Sobell, H.M., Tsai, C.-C., Gilbert, S.G., Jain, S.C., Sakore, T.D.: Organization of DNA in chromatin. Proc. Natl. Acad. Sci. U.S.A. 73, 3068 (1976)PubMedGoogle Scholar
  101. Sogo, J.M., Greenstein, M., Skalka, A.: The circle mode of replication of bacteriophage lambda: The role of covalently closed templates and the formation of mixed catenated dimers. J. Mol. Biol. 103, 537–562 (1976)PubMedGoogle Scholar
  102. Staudenbauer, W.L.: Novobiocin-A specific inhibitor of semi-conservative DNA replication in permeabilized Escherichia coli cells. J. Mol. Biol. 96, 201–205 (1975)PubMedGoogle Scholar
  103. Syvanen, M.: In vitro genetic recombination of bacteriophage A. Proc. Natl. Acad. Sci. U.S.A. 71, 2496–2499 (1974)PubMedGoogle Scholar
  104. Thomas, R.: Control circuits. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 211–220Google Scholar
  105. Thompson, B.J., Camien, M.N., Warner, R.C.: Kinetics of branch migration in double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 73, 2299–2303 (1976)PubMedGoogle Scholar
  106. Tomizawa, J., Anraku, N.: Molecular mechanisms of genetic recombination in bacteriophage. IV. Absence of polynucleotide interruption in DNA of T4 and A phage particles, with special reference to heterozygosis. J. Mol. Biol. 11, 509–527 (1965)PubMedGoogle Scholar
  107. Wang, J.C.: Interactions between twisted DNA’s and enzymes: the effects of superhelical turns. J. Mol. Biol. 87, 797–816 (1974)PubMedGoogle Scholar
  108. Weil, J., Signer, E.R.: Recombination in bacteriophage. II. Site-specific recombination promoted by the integration system. J. Mol. Biol. 34, 273–279 (1968)PubMedGoogle Scholar
  109. Weisberg, R.A.: Requirements for curing A lysogens. Virology 41, 195–199 (1970)PubMedGoogle Scholar
  110. Weisberg, R.A., Gottesman, M.E.: The stability of int and xis functions. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 489–500Google Scholar
  111. Weisberg, RA., Gottesman, S., Gottesman, M.E.: Bacteriophage A: The lysogenic pathway. In: Comprehensive Virology. Frankel-Conrat, H., Wagner, R. (eds.). New York: Plenum Press 1977, Vol. Ill, pp. 197–258Google Scholar
  112. Williams, J.G.K., Wulff, D.L., Nash, H.A.: A mutant of Escherichia coli deficient in a host function required for phage lambda integration and excision. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhari, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977, pp. 357–361Google Scholar
  113. Wulff, D.L.: Lambda CIN-1, a new mutation which enhances lysogenization by bacteriophage lambda, and the genetic structure of the lambda CY region. Genetics 82, 401–416 (1976)PubMedGoogle Scholar
  114. Yarmolinsky, M.B.: Alternative modes of prophage insertion and excision. Adv. Biosci. 8, 31–67 (1972)Google Scholar
  115. Zabin, I., Villarejo, M.R.: Protein complementation. Annu. Rev. Biochem. 44, 295–313 (1975)PubMedGoogle Scholar
  116. Zissler, J.: Integration-negative) mutants of phage A. Virology 31, 189 (1967)PubMedGoogle Scholar
  117. Zissler, J., Signer, E., Schaeffer, F.: The role of recombination in growth of bacteriophage lambda. I. The gamma gene. In: The Bacteriophage Lambda. Hershey, A.D. (ed.)1. New York: Cold Spring Harbor Laboratory 1971, pp. 455–475Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Howard A. Nash
    • 1
  1. 1.Laboratory of NeurochemistryNational Institute of Mental HealthBethesdaUSA

Personalised recommendations