Diese Arbeit wurde durch ein Habilitandenstipendium der Deutschen Forschungsgemeinschaft gefördert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, J. I., Spence, A. A., Parikh, R. K., Stuart, B.: The role of airway closure in postoperative hypoxaemia. Birt. J. Anaesth. 45, 34 (1973).CrossRefGoogle Scholar
  2. Anthonisen, N. R., Danson, J., Robertson, P. C., et al.: Airway closure as a function of age. Resp. Physiol. 8, 58 (1969/70).Google Scholar
  3. Baraka, A.: The influence of carbon dioxide on neuromuscular block caused by tubocurarine chloride in the human subject. Brit. J. Anaesth. 36, 272 (1964).PubMedCrossRefGoogle Scholar
  4. Baumberger, J. P., Goodfriend, R. B.: Determination of arterial oxygen tension in man by equilibration through intact skin. Fed. Proc. 10, 10 (1951).Google Scholar
  5. Beecher, H. K.: Effect of laparotomy on lung volume. Demonstration of a new type of pulmonary collapse. J. clin. Invest. 12, 651 (1933).PubMedCrossRefGoogle Scholar
  6. Bendixen, H. H., Bullwinkel, B., Hedley-Whyte, J., Laver, M. B.: Atelectasis and shunting during spontaneous ventilation in anaesthetized patients. Anesthesiology 25, 297 (1964).PubMedCrossRefGoogle Scholar
  7. Bergman, N. A.: Components of the alveolar-arterial oxygen tension difference in anaesthetized man. Anesthesiology 28, 517 (1967).PubMedGoogle Scholar
  8. Boba, A., Cincotti, J. P., Piazza, T. E., Landmesser, M.: Effects of apnea, endotracheal suction, and oxygen insufflation, alone and in combination, upon arterial oxygen saturation in anesthetized patients: J. Lab. Clin. Med. 53, 680 (1959).PubMedGoogle Scholar
  9. Brantigan, J. W., Gott, V. L., Martz, M. N.: Teflon membrane for measurement of blood and intramyocardial gas tension by mass spectroscopy. J. appl. Physiol. 32, 276 (1972).PubMedGoogle Scholar
  10. Brückner, J. B., Gethmann, J. W., Patschke, D., et al.: Untersuchungen zur Wirkung von Etomidate auf den Kreislauf des Menschen. Anaesthesist 23, 322 (1974).PubMedGoogle Scholar
  11. Charlton, G. A.: A microelectrode for determination of dissolved oxygen in tissue. J. appl. Physiol. 16, 729 (1961).PubMedGoogle Scholar
  12. Clark, L. C., Wolf, R., Granger, D., Taylor, Z.: Continuous recording of blood oxygen tension by polarography. J. appl. Physiol. 6, 189 (1953).PubMedGoogle Scholar
  13. Clark, L. C.: Monitor and control of blood and tissue oxygen tensions. Amer. Soc. for Art. Int. Organs 2, 41 (1956).Google Scholar
  14. Clark, L. C., Sachs, G.: Bioelectrodes for tissue metabolism. Annals for the N. Y. Acad. Sci. 148, 133 (1968).CrossRefGoogle Scholar
  15. Cole, J. S., Wayne, E. M., Cheung, P. W., Johnson, C. C.: Clinical studies with a solid state fiberoptic oximeter. Amer. J. Cardiol. 29, 383 (1972).PubMedCrossRefGoogle Scholar
  16. Colgan, F. J., Whang, T. B.: Anesthesia and atelectasis. Anesthesiology 29, 917 (1968).PubMedCrossRefGoogle Scholar
  17. Comroe, J. H., Bothelho, S.: The unreliability of cyanosis in the recognition of arterial anoxemia. Amer. J. med. Sci. 214, 1 (1947).CrossRefGoogle Scholar
  18. Corssen, G., Domino, E. F., Sweet, R. B.: Neuroleptanalgesia and anesthesia. Anesth. Analg. 43, 748 (1964).PubMedCrossRefGoogle Scholar
  19. Couture, J., Picken, J. J., Ruff, F., et al.: Demonstration of airway closure and trapping of air in the recumbent position in normal and obese subjects. Ann. roy. Coll. Phys. Surg. Canada 3, 25 (1970).Google Scholar
  20. Craig, D. B., Wahba, W. M., Don, H. F., et al.: “Closing volume” and its relationship to gas exchange in seated and supine positions. J. appl. Physiol. 31, 717 (1971).PubMedGoogle Scholar
  21. Cunningham, D. J. C., Lloyd, B. B. (eds.): Regulation of human respiration, 1. ed., p. 331. Oxford: Blackwell Scientific Publishing 1963.Google Scholar
  22. Danneel, von H.: Über den durch diffundierende Gase hervorgerufenen Reststrom. Z. Elektrochem. 227, (1897/98).Google Scholar
  23. Davies, P. W., Brink, F.: Microelectrodes for measuring local oxygen tension in animal tissue. Rev. Sci. Instr. 13, 524 (1942).CrossRefGoogle Scholar
  24. Davies, P. W.: The oxygen cathode. Chapt. 3 in: Physical Techniques in Biological Research, Nastuk, W. L. (ed.). New York: Academic Press 1962.Google Scholar
  25. De Castro, J.: Sequentielle analgetische Anaesthesie unter Anwendung von Fentanyl-Naloxon oder Naloxon-Pentazocin. Symposion über Neuroleptanalgesie, Bremen 1974.Google Scholar
  26. Denlinger, J. K., Kallos, T., Marshall, B. E., Pulmonary blood flow distribution in man anesthetized in the lateral position. Anest. Anaig. 51, 260 (1972).Google Scholar
  27. Diament, M. L., Palmer, K. N. V.: Venous/arterial pulmonary shunting as the principal cause of postoperative hypoxaemia. Lancet 1, 15 (1967).PubMedCrossRefGoogle Scholar
  28. Doenicke, A., Lorenz, W., Beigl, R., et al.: Histamine release after intravenous application of shortacting hypnotics. Brit. J. Anaesth. 45, 1097 (1973a).PubMedCrossRefGoogle Scholar
  29. Doenicke, A., Wagner, E., Beetz, K. H.: Blutgasanalysen (arteriell) nach drei kurzwirkenden i. v. Hypnotica. Anaesthesist 22, 353 (1973b).Google Scholar
  30. Doenicke, A., Kugler, J., Penzel, G., et al.: Hirnfunktion und Toleranzbreite nach Etomidate, einem neuen barbituratfreien i. v. applizierbaren Hypnotikum. Anaesthesist 22, 357 (1973c).PubMedGoogle Scholar
  31. Doenicke, A., Gabanyi, D., Lemee, H., Schürk-Bulich, M.: Kreislaufverhalten und Myokardfunktion nach drei kurzwirkenden i. v. Hypnotica Etomidate, Propanidid, Methohexital. Anaesthesist 23, 108 (1974).PubMedGoogle Scholar
  32. Domino, E. F., Chodoff, P., Corssen, G.: Pharmacologic effects of CI-581. A new dissociative anesthetic in man. J. clin. Pharmac. Ther. 6, 279 (1965).Google Scholar
  33. Don, H. F., Wahba, M., Cuadrado, L., Kelkar, K.: The effects of anesthesia and 100% oxygen on the functional residual capacity of the lungs. Anesthesiology 32, 521 (1970).PubMedCrossRefGoogle Scholar
  34. Don, H. F., Craig, D. B., Wahba, W. M., et al.: The measurement of trapped gas in the lungs at functional residual capacity and the effect of posture. Anesthesiology 35, 582 (1971).PubMedCrossRefGoogle Scholar
  35. Don, H. F., Wahba, W. M., Craig, D. B.: Airway closure, gas trapping, and the functional residual capacity during anesthesia. Anesthesiology 36, 533 (1972).PubMedCrossRefGoogle Scholar
  36. Downes, J. J., Wislon J. F., Goodson, D.: Apnea, suction, and hyperventilation: effect on arterial oxygen saturation. Anesthesiology 22, 29 (1961).CrossRefGoogle Scholar
  37. Eberhard, P., Hammacher, K., Mindt, W.: Methode zur kutanen Messung des Sauerstoffpartialdruckes. Biomed. Tech. 18, 216 (1973).CrossRefGoogle Scholar
  38. Eckenhoff, J. E., Oesch, S. R.: The effects of narcotics and antagonists upon the respiration and circulation in man. J. Pharmacol, exp. Ther, 1, 483 (1960).Google Scholar
  39. Ellison, L. T., Duke, J. F., Strickland, G. W., Ellison, R. G.: Oxygen requirements in the early postoperative period (48 hours): ventilation and respiratory exchange. Ann. Surg. 163, 559 (1966).PubMedCrossRefGoogle Scholar
  40. Erdmann, W., Kunke, S.: Changes of oxygen supply to the tissue following intravenous application of anesthetic drugs. In: Oxygen Transport to Tissue. Bicher, H. I., and Bruley, D. F. (eds.), p. 261. New York: Plenum Publishing 1973.Google Scholar
  41. Evans, J. M., Hogg, M. I. J., Nunn, J. N., Rosen, M.: Degree and duration of reversal by naloxone of effects of morphine in conscious subjects. Brit. med. J. 2, 589 (1974).PubMedCrossRefGoogle Scholar
  42. Evans, N. T. S., Naylor, P. F. D.: The systematic oxygen supply to the surface of human skin. Resp. Physiol. 3, 21 (1967).CrossRefGoogle Scholar
  43. Evers, W., Racz, G. B., Levy, A. A.: A comparative study of plastic (polypropylene) and glass syringes in blood gas analysis. Anest. Analg. 51, 92 (1972).CrossRefGoogle Scholar
  44. Fabel, H.: Die fortlaufende Messung des arteriellen Sauerstoffdruckes beim Menschen. Arch. Kreislauf forsch. 57, 145 (1968).CrossRefGoogle Scholar
  45. Fahri, L. E., Rahn, H.: Theoretical analysis of the alveolar-arterial O2 difference with special reference to the distribution effect. J. appl. Physiol. 1, 699 (1955).Google Scholar
  46. Fatt, I.: An ultramicro oxygen electrode. J. appl. Physiol. 19, 326 (1964).PubMedGoogle Scholar
  47. Ferrari, H. A., Stephen, C. R.: Neuroleptanalgesia - pharmacology and clinical experience with Droperidol and Fentanyl. S. med. J. 59, 815 (1966).CrossRefGoogle Scholar
  48. Fink, R., Carpenter, S. L., Holaday, D. A.: Diffusion anoxia during recovery from nitrous oxide-oxygen anesthesia. Fed. Proc. 13, 354 (1954).Google Scholar
  49. Finley, T. N., Lenfant, C., Haab, P., et al.: Venous admixture in the pulmonary circulation of anesthetized dogs. J. appl. Physiol. 15, 418 (1960).PubMedGoogle Scholar
  50. Frey, R.: Vergleichende Untersuchung der muskelerschlaffenden Mittel. Habilitationsschrift, Heidelberg, 41, (1952).Google Scholar
  51. Friesen, W. O., McIllroy, M. B.: Rapidly responding oxygen electrode for respiratory gas sampling. J. appl. Physiol. 29, 258 (1970).PubMedGoogle Scholar
  52. Frumin, M. J., Bergmann, N. A., Holaday, D. A., et al.: Alveolar-arterial oxygen differences during artificial respiration in man. J. appl. Physiol. 14, 694 (1959).PubMedGoogle Scholar
  53. Frumin, M. J., Edelist, G.: Diffusion anoxia: a critical reapprasal. Anesthesiology 31, 243 (1969).PubMedCrossRefGoogle Scholar
  54. Georg, J., Hörnum, I., Mellemgaard, K.: The mechanism of hypoxaemia after laparotomy. Thorax 22, 382 (1967).PubMedCrossRefGoogle Scholar
  55. Gleichmann, U., Lübbers, D. W.: Die Messung des Sauerstoffdruckes in Gasen und Flüssigkeiten mit der Pt-Elektrode unter besonderer Berücksichtigung der Messung im Blut. Pflügers Arch. ges. Physiol. 271, 431 (1960).Google Scholar
  56. Götz, E.: Wirkungen von Fentanyl, Droperidol und Etomidate auf Sauerstoffverbrauch und Gluconeogenese in der isolierten perfundierten Leber. Anaesthesist 23, 331 (1974).PubMedGoogle Scholar
  57. Grote, J.: Atemgas-pH-Nomogramme für das menschliche Blut bei verschiedenen Temperaturen. In: Nomogramme zum Säure-Basen-Status des Blutes und zum Atemgastransport. Thews, G. (ed.): Anaesthesiologie und Wiederbelebung, Band 53, S. 54. Berlin-Heidelberg-New York: Springer Verlag 1971.Google Scholar
  58. Grunewald, W.: Zur Theorie der AusgleichsVorgänge an Pt-Elektroden und ihre mathematischen Grundlagen. Dissertation, Marburg (1966).Google Scholar
  59. Grunewald, W.: Diffusion error and O2 consumption of the Pt-Electrode during pO2-measurements in the steady state. Pflügers Arch. ges. Physiol. 271, 431 (1970).Google Scholar
  60. Grunewald, W.: Einstellzeit der Pt-Elektrode bei Messungen nicht-stationärer O2-Partialdrücke. Pflügers Arch. ges. Physiol. 322, 109 (1971).Google Scholar
  61. Guedel, A. E.: Inhalation Anaesthesia. A Fundamental Guide. Second Edition, p. 10. New York: The MacMillan Company 1952.Google Scholar
  62. Harris, T. R., Nugent, M.: Continuous arterial oxygen tension monitoring in the newborn infant. J. Pediat. 82, 929 (1973).PubMedCrossRefGoogle Scholar
  63. Harth, O., Thews, G.: Eine schnellanzeigende Platinelektrode zur fortlaufenden O2-Analyse in der Atmungsluft. Pflügers Arch. ges. Physiol. 281, 100 (1964J.Google Scholar
  64. Heisterkamp, D. V., Cohen, P. J.: The use of naloxon to antagonize large dosis of opiates administered during nitrous oxide anesthesia. Anest. Analg. 53, 12 (1974).CrossRefGoogle Scholar
  65. Hempelmann, G., Hempelmann, W., Hartmann, W., Reichelt, H.: Hypoxiegefahr während Propanididnarkosen. Anaesthesist 21, 40 (1972a).PubMedGoogle Scholar
  66. Hempelmann, G., Hartmann, W., Fabel, H.: Fortlaufende Sauerstoffpartialdruckmessung mit einer polarographischen Mikromethode während der NLA- Einleitung und -ausleitung. In: Neuroleptanalgesie, Part II, Henschel, W. F. (ed.) p. 117: Stuttgart - New York: Schattauer Verlag 1972b.Google Scholar
  67. Hempelmann, G., Hempelmann, W., Piepenbrock, S.: Vergleichende Untersu-chungen über fortlaufende arterielle pO2-Messungen und Kreislaufkontrollen bei Kurznarkosen mit CT 1341, Methohexital, Propanidid und Thiobarbiturat. Langebecks Arch. Klin. Chir., Suppl., 309 (1973).Google Scholar
  68. Hempelmann, G., Hempelmann, W., Piepenbrock, S., et al.: Die Beeinflussung der Blutgase und Hämodynamik durch Etomidate bei myocardial vorgeschädigten Patienten. Anaesthesist 23, 423 (1974).PubMedGoogle Scholar
  69. Henry, W.: Experiments on the quantity of gases absorbed by water at different temperatures, and under different pressure. Phil. Trans. Roy. Soc. 93, 29 (1803).CrossRefGoogle Scholar
  70. Heyrovsky, J.: Polarographisches Praktikum, Anleitung für die chemische Laboratoriumspraxis Bd. 4, 5. Berlin: Springer-Verlag 1948.Google Scholar
  71. Holland, J., Milic-Emili, J., Macklem, P. T., et al.: Regional distribution of pulmonary ventilation and perfusion in elderly subjects. J. clin. Invest. 47, 81 (1968).PubMedCrossRefGoogle Scholar
  72. Holley, H. S., Milic-Emili, J., Becklake, M. R., et al.: Regional distribution of pulmonary ventilation and perfusion in obesity. J. clin. Invest. 46, 475 (1967).PubMedCrossRefGoogle Scholar
  73. Huch, A., Huch, R., Lübbers, D. W.: Quantitative polarographische Sauer-stoffdruckmessung auf der Kopfhaut des Neugeborenen. Arch. Gynäk. 207, 443 (1969).CrossRefGoogle Scholar
  74. Huch, R., Lübbers, D. W., Huch, A.: Quantitative continuous measurement of partial oxygen pressure on the skin of adults and newborn babies. Pflügers Arch. ges. Physiol. 337, 185 (1972).Google Scholar
  75. Huch, R., Huch, A., Lübbers, D. W.: Transcutaneous measurement of blood pO2 (tcpO2) - Method and application in perinatal medicine. J. perinat. Med. 1, 183 (1973).PubMedCrossRefGoogle Scholar
  76. Huch, R., Huch, A.: Transcutane Überwachung des arteriellen pO2 in der Anaesthesie. Einsatzfähigkeit der Methode am Beispiel von Kurznarkosen. Anaethesist 23, 181 (1974).Google Scholar
  77. Huch, A., Huch, R.: Klinische und physiologische Aspekte der transcutanen Sauerstoffdruckmessung in der Perinatalmedizin. Z. Geburtsh. u. Perinat. 179, 235 (1975).Google Scholar
  78. Johnson, C. C., Palm, R. D., Stuart, D. C., et al.: A solid state fiber optics oximeter. J. Ass. Advanc. Med. Instr. 5, 77 (1971).Google Scholar
  79. Kapany, N. S., Harrison, D. C., Silvertrust, N.: Fiber optics oximeter-densitometer for cardiovascular studies. Appl. Optics 6, 565 (1967).Google Scholar
  80. Kettler, D., Sonntag, H., Donath, U., et al.: Hämodynamik, Myokardmechanik, Sauerstoffbedarf und Sauerstoffversorgung des menschlichen Herzens unter Narkoseeinleitung mit Etomidate. Anaesthesist 23, 116 (1974).PubMedGoogle Scholar
  81. Kimmich, H. P., Kreuzer, F.: Catheter pO2 electrode with low flow dependency and fast response. Progr. Resp. Res. 3, 100 (1969).Google Scholar
  82. Kimmich, H. P., Kreuzer, F., Spaan, J. G., et al.: Monitoring of pO2 in human blood. Oxygen transport to tissue, Mainz (1975), to be published.Google Scholar
  83. Knudsen, J.: Duration of hypoxaemia after uncomplicated upper abdominal and thoraco-abdominal operations. Anaesthesist 25, 372 (1970).CrossRefGoogle Scholar
  84. Koeff, S. T., Tsoao, M. V., Vadnay, A., et al.: Continuous measurement of intravascular oxygen tension in normal and adults. J. clin. Invest. 41, 1125 (1962).PubMedCrossRefGoogle Scholar
  85. Kolthoff, J. M., Lingane, J. J.: Polarographie. Interscience Publishers, New York, London 1952.Google Scholar
  86. Krell, W.: Die polarographische Messung des Sauerstoffpartialdruckes mit Mikroelektroden. Untersuchung der methodischen Voraussetzungen für die Anwendung in vivo. Inaugural-Dissertation, Mainz (1972).Google Scholar
  87. Kreuzer, F., Harris, E. D., Nessler, C. G.: A method for continuous recording in vivo of blood oxygen tension. J. appl. Physiol. 15, 77 (1960).PubMedGoogle Scholar
  88. Kunze, K., Lübbers, D. W., Windisch, E.: Die Messung des absoluten Sauerstoff druckes mit der Kammer-Pt-Elektrode in beliebigen Medien, insbesondere im Blut und Gewebe. Pflügers Arch, ges. Physiol. 276, 415 (1963).Google Scholar
  89. Kwan, M., Fatt, I.: A noninvasive method of continouos arterial oxygen tension estimation from measured palpebral conjunctival oxygen tension. Anesthesiology 35, 309 (1971).PubMedCrossRefGoogle Scholar
  90. Laver, B. L., Scifen, A.: Measurement of blood oxygen tension in anesthesia. Anesthesiology 26, 73 (1965).PubMedCrossRefGoogle Scholar
  91. Laws, A. K.: Effects of induction of anaesthesia and muscle paralysis on functional residual capacity of the lungs. Canad. Anaesth. Soc. J. 15, 325 (1968).PubMedCrossRefGoogle Scholar
  92. Leblanc, P., Ruff, F., Milic-Emili, J.: Effects of age and body position on “airway closure” in man. J. appl. Physiol. 28, 448 (1970).PubMedGoogle Scholar
  93. Liljestrand, A.: Neural control of respiration. Physiol. Rev. 38, 691 (1958).PubMedGoogle Scholar
  94. Lübbers, D. W., Baumgärtl, H., Fabel, H., Huch, A., Kessler, M., Kunze, K., Riemann, H., Sciler, D., Schuchardt, S.: Principle of construction and application of various platinum electrodes. In: Oxygen pressure recording in gases, fluids and tissues. Kreuzer, F. (ed.), Progress in Respiration Research, Vol. 3, p. 136. Basel: Karger 1969.Google Scholar
  95. Mansell, A., Bryan, A. G., Levison, H.: Airway closure in children. Clin. Res. 18, 803 (1971).Google Scholar
  96. Marsh, H. M., Rehder, K., Sessler, A. D., et al.: Effects of mechanical ventilation, muscle paralysis, and posture on ventilation-perfusion relationships in anesthetized man. Anesthesiology 38, 59 (1973).PubMedCrossRefGoogle Scholar
  97. Marshall, B. E., Cohen, P. J., Klingmaier, C. H.: Pulmonary venous admixture before, during, and after halothane: oxygen anesthesia in man. J. appl. Physiol. 27, 653 (1969).PubMedGoogle Scholar
  98. Medrado, V., Stephen, C. R.: Arterial blood gas studies during induction of anaesthesia and endotracheal intubation. Surg. Gynec. Obstet. 123, 1275 (1966).PubMedGoogle Scholar
  99. Mendelson, C; L.: Aspiration of stomach contents into the lungs during obstetric anaesthesia. Amer. J. Obstet. Gynec. 52, 191 (1946).PubMedGoogle Scholar
  100. Michenfelder, J. D., Fowler, W. S., Theye, R. A.: CO2 levels and pulmonary shunting in anesthetized man. J. appl. Physiol. 21, 1471 (1966).PubMedGoogle Scholar
  101. Montgomery, H., Howowitz, O.: Oxygen tension of tissues by the Polarographie method. I. Intracellular oxygen tension and blood flow of the skin of human extremities. J. clin. Invest. 29, 1120 (1950).Google Scholar
  102. Müller-Schauenburg, W., Betz, E.: Gas and heat clearance comparison and the use of heat transport for quantitative local blood flow measurement. In: Cerebral blood flow. Brock, M. et al. (eds.) p. 47: Heidelberg - New York: Springer 1969.Google Scholar
  103. Mushin, W. W., Rendell-Baker, L., Thompson, P. W., Mapleson, W. W.: Automatic ventilation of the lungs, 2nd ed. Oxford: Blackwell Scientific Publications 1969.Google Scholar
  104. Nahas, G. G., Fink, B. R.: Regulation of respiration. Ann. N. Y. Acad. Sci. (1961/62).Google Scholar
  105. Niesel, W., Thews, G.: Ein elektrisches Analogrechenverfahren zur Lösung physiologischer Diffusionsprobleme. I. Mitteilung. Pflügers Arch. ges. Physiol. 269, 282 (1959).CrossRefGoogle Scholar
  106. Nunn, J. F.: Factors influencing the arterial oxygen tension during halothane anesthesia with spontaneous respiration. Brit. J. Anaesth. 36, 327 (1964).PubMedCrossRefGoogle Scholar
  107. Okinaka, A. J.: Closure of pulmonary air spaces following abdominal surgery. Surg. Gynec. Obstet. 121, 1282 (1965).PubMedGoogle Scholar
  108. O’Neil, A., Winnie, A. P., Zadigian, M. E., Collins, V.: Premedication for ketamine anesthesia. Anesth. Analg. 51, 475 (1972).PubMedGoogle Scholar
  109. Opitz, E., Schneider, M.: Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen.. Ergebn. Physiol. 46, 126 (1950).Google Scholar
  110. Pandy, J., Nunn, J. F.: Failure to demonstrate progressive falls of arterial pO2 during anesthesia. Anaesthesia 23, 38 (1968).CrossRefGoogle Scholar
  111. Parker, D., Key, A., Davies, R.: Catheter-tip transducer for continuous in-vivo measurement of oxygen tension. Lancet 5, 952 (1971).Google Scholar
  112. Payne, J. P.: Influence of carbon dioxide on neuromuscular blocking activity of relacant-drugs in cat. Brit. J. Anaesth. 30, 206 (1958).PubMedCrossRefGoogle Scholar
  113. Perl, W.: Heat and matter distribution in body tissues and the determination of. tissue blood flow by local clearance methods. J. theor. Biol. 2, 201 (1962).CrossRefGoogle Scholar
  114. Peter, K., Arens, H., Klose, R., Mayr, J.: Blutgasanalytische Untersuchungen während der Narkosebeatmung, mit und ohne Kohlensäureabsorption. Z. prakt. Anästh. 7, 75 (1972).Google Scholar
  115. Pflüger, H.: Respiratorische Veränderungen bei intravenösen Narkosen. Anaesthesist 9, 56 (1960).Google Scholar
  116. Podlesch, J., Zindler, M.: Erste Erfahrungen mit dem Phencyclidinderivat Ketamine (CI-581) einem neuen intravenösen und intramuskulären Narkosemittel. Anaesthesist 16, 299 (1967).PubMedGoogle Scholar
  117. Podlesch, J.: Blutgasanalysen während Ketamin-Narkose unter Berücksichtigung von Prämedikation und Nachinjektionen. In: Ketamine. Kreuscher, H. (Hrsg.) S. 133. Berlin - Heidelberg -New York: Springer 1969.Google Scholar
  118. Potgieter, S. V.: Atelectasis: its evaluation during upper urine tract surgery. Brit. J. Anaesth. 31, 472 (1959).PubMedCrossRefGoogle Scholar
  119. Priebe, L., Betz, E.: Wärmetransport in homogen und isotropdurchblutetem Gewebe. Ärztl. Forsch. 23, 18 (1969).Google Scholar
  120. Prys-Roberts, C., Kelman, G. R., Greenbaum, R., et al.: Hemodynamics and alveolar-arterial-pO2-differences at varying paCO in anesthetized man. J. appl. Physiol. 25, 80 (1968).PubMedCrossRefGoogle Scholar
  121. Rackow, H., Salanitre, E., Frumin, M. J.: Dilution of alveolar gasis during nitrous oxidfe excretion in man. J. appl. Physiol. 16, 723 (1961).PubMedGoogle Scholar
  122. Radford, E. P., Ferris, B. G., Kriete, B. C.: Clinical use of a nomogram to estimate proper ventilation during artificial ventilation. N. Engl. J. Med. 251, 877 (1954).PubMedCrossRefGoogle Scholar
  123. Radford, E. P.: Ventilation standards for use in artificial respiration. J. appl. Physiol. 7, 451 (1955).PubMedGoogle Scholar
  124. Rolly, G.: The use of ketamine (CI-581) as monoanesthetic in clinical anesthesia, acid-base status and oxygenation. In: Ketamine, Kreuscher, H. (Hrsg.), p. 117. Berlin -Heidelberg -New York: Springer 1969.Google Scholar
  125. Rooth, G., Sjöstedt, S., Caligari, F.: Bloodless determination of arterial oxygen tension by polarogräphy. Science Tools, the LKW Instrument J. 4, 37 (1957).Google Scholar
  126. Schmidt, K., Thews, G., Hertz, C. W.: Untersuchung des Ventilations-Durchblutungs-Verhältnisses in der funktionell inhomogenen Lunge mittels des “inspiratorisehen Sauerstoffsprunges”. Pflügers Arch. ges. Physiol. 282, 276 (1965).Google Scholar
  127. Schuh, F. T.: Nebenwirkungen von Lachgas, Anaesthesist 24, 392 (1975).PubMedGoogle Scholar
  128. Schuler, R., Kreuzer, F.: Rapid polarographic in vivo oxygen catheter electrodes. Resp. Physiol. 3, 90 (1967).CrossRefGoogle Scholar
  129. Schuurmans-Stekhoven, J. H., Kreuzer, F.: Shunt components of alveolar arterial oxygen pressure difference and atelectasis. Resp. Physiol. 3, 192 (1967).CrossRefGoogle Scholar
  130. Selim, D., Markello, R., Baker, J. M.: The relationship of ventilation to diffusion hypoxia. Anesth. Analq. 49, 437 (1970).Google Scholar
  131. Severinghaus, J. W.: The rate of uptake of nitrous oxide in man. J. clin. Invest. 33, 1183 (1954).PubMedCrossRefGoogle Scholar
  132. Severinghaus, J. W.: Oxyhemoglobin dissociation curve correction for temperature and pH-variation in human blood. J. appl. Physiol. 12, 485 (1958).PubMedGoogle Scholar
  133. Severinghaus, J. W.: Blood gas calculator. J. appl. Physiol. 21, 1108 (1966).PubMedGoogle Scholar
  134. Severinghaus, J. W., Weiskopf, R. B., Nishimura, M., Bradley, F.: Oxygen electrode errors due to polarographic reduction of halothane. J. appl. Physiol. 31, 640 (1971).PubMedGoogle Scholar
  135. Shah, J., Jones, J. G., Galvin, J., Tomlin, P. J.: Pulmonary gas exchange during induction of anaesthesia with nitrous oxide in seated subjects. Brit. J. Anaesth. 43, 1013 (1971).PubMedCrossRefGoogle Scholar
  136. Sheffer, L., Steffenson, J. L., Birch, A. A.: Nitrous-oxide-induced diffusion hypoxia in patients breathing spontaneously. Anesthesiology 37, 436 (1972).PubMedCrossRefGoogle Scholar
  137. Smith, L. L., Walton, D. M., Nislon, D. R., et al.: Continuous gas and pH monitoring during cardiovascular surgery. Amer. J. Surg. 120, 249 (1970).PubMedCrossRefGoogle Scholar
  138. Spence, A. A., Alexander, J. I.: Mechanism of postoperative hypoxaemia. Proc. roy. Soc. Med. 65, 12 (1972).PubMedGoogle Scholar
  139. Staub, N. C.: A simple small oxygen electrode. J. appl. Physiol. 16, 192 (1961).Google Scholar
  140. Taylor, G. J.: Apnea due to apparent potassium imbalance. Anaesthesia 18, 9 (1963).PubMedCrossRefGoogle Scholar
  141. Thews, G.: Die Sauerstoffdiffusion im Gehirn. Ein Beitrag zur Frage der SauerstoffVersorgung der Organe. Pflügers Arch. ges. Physiol. 271, 197 (1960).CrossRefGoogle Scholar
  142. Thews, G.: Ein Mikroanalyseverfahren zur Bestimmung der Sauerstoffdrucke in kleinen Blutproben. Archiv, ges. Physiol. 276, 89 (1962).Google Scholar
  143. Thews, G.: Die theoretischen Grundlagen der Sauerstoffaufnahme in der Lunge. Ergebn. Physiol. 53, 42 (1963).PubMedGoogle Scholar
  144. Thews, G., Schmidt, K.: Analyse der Verteilung von Ventilation und Durchblutung in der funktionell inhomogenen Lunge nach dem Verfahren des “inspiratorischen Sauerstoffsprunges”. Pflügers Arch. ges. Physiol. 282, 259 (1965).Google Scholar
  145. Thews, G.: Nomogramme zum Säure-Basen-Status des Blutes und zum Atemgas-transport. Anaesthesiologie und Wiederbelebung, Bd. 53. Berlin -Heidelberg - New York: Springer 1971.Google Scholar
  146. Thews, G.: Nomogramme zur Berücksichtigung der Körpertemperatur bei Blutgas- und pH-Messungen. Anaesthesist 21, 466 (1972).PubMedGoogle Scholar
  147. Tice, A., Grosfield, J. L., Mazzia, V. D. B., Spencer, F. C.: Monitoring of blood gas tensions and pH during surgical operations. Arch. Surg. 96, 247 (1968).PubMedGoogle Scholar
  148. Tödt, F.: Elektrochemische Sauerstoffmessungen. Berlin: De Gruyter 1958.Google Scholar
  149. Voigt, E., Weitzsäcker, W.: Gasaustausch und Lungenmechanik unter Narkosebeatmung. Anaesthesist 24, 166 (1975).PubMedGoogle Scholar
  150. Wald, A., Hass, W. K., Siew, F. P., Wood, D. H.: Continuous measurement of blood gases in vivo by mass spectroscopy. Med. biol. Eng. 8, 111 (1970).Google Scholar
  151. Waser, P. G., Lüthi, U.: Verteilung, Metabolismus und Elimination von 3H-Diallyl-nor-Toxiferin (Alloferin) bei Katzen. Helv. physiol. Pharmacol. Acta 24, 259 (1966).Google Scholar
  152. Woldring, S., Owens, G., Woolford, D. C.: Blood gases: Continuous in vivo recording of partial pressure by mass spectrography. Science 153, 885 (1966).PubMedCrossRefGoogle Scholar
  153. Yamamura, H., Kaito, K., Ikeda, K., et al.: The relationship between physiologic shunt and cardiac output in dogs under general anesthesia. Anesthesiology 30, 406 (1969).PubMedCrossRefGoogle Scholar
  154. Zindler, M.: Changes of respiration and blood gases after propanidid. Acta anesth. scand. 17, 67 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Klaus Stosseck
    • 1
  1. 1.Institut für Anaesthesiologie der UniversitätMainzGermany

Personalised recommendations