General Pharmacology of Amphetamine-Like Drugs

  • E. Änggård
  • T. Lewander
  • L.-M. Gunne
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 45 / 2)


Amphetamine and related central stimulant drugs are derivatives of β-phenylethylamine (Table 1) and are thus relatively simple organic bases. The general β-phenylethylamine skeleton is one which amphetamine shares with the neurotransmitters noradrenaline, adrenaline, and dopamine. Phenylethylamine itself has central stimulant properties, but has an extremely short half-life in the body due to rapid metabolism by monoamine oxidase (MAO). Amphetamine has, due to steric hindrance by the α-methyl group, much less affinity for MAO and therefore has a longer half-life.


  1. Abbott, W.O., Henry, C.M.: Paredrine (β-4-hydroxyphenylisopropylamine); a clinical investigation of a sympathomimetic drug. Amer. J. med. Sci. 193, 661–673 (1937)Google Scholar
  2. Alles, G.A., Feigen, G.A.: Comparative actions of phenylthienyl- and furylisopropylamines. J. Pharmacol. exp. Ther. 72, 265–275 (1941)Google Scholar
  3. Alles, G.A., Wisegarver, B.B.: Amphetamine excretion studies in man. J. Toxicol. appl. Pharmacol. 3, 678–688 (1961)Google Scholar
  4. Alleva, J.J.: Metabolism of tranylcypromine-14C and D,L-amphetamine-14C in the rat. J. med. Chem. 6, 621–624 (1963)PubMedGoogle Scholar
  5. Änggård, E., Gunne, L.M., Jönsson, L.E., Niklasson, F.: Pharmacokinetic and clinical studies on amphetamine dependent subjects. Europ. J. clin. Pharmacol. 3, 3–11 (1970a)Google Scholar
  6. Änggård, E., Gunne, L.M., Niklasson, F.: Gas chromatographic determination of amphetamine in blood, tissue, and urine. Scand. J. clin. Lab. Invest. 26, 137–143 (1970b)PubMedGoogle Scholar
  7. Änggård, E., Jönsson, L.E., Hogmark, A.L., Gunne, L.M.: Amphetamine metabolism in amphetamine psychosis. J. clin. Pharm. Ther. 14 (5), 870–880 (1973)Google Scholar
  8. Angrist, B.M., Shopsin, B., Gershon, S.: Comparative psychotomimetic effects of stereoisomers of amphetamine. Nature (Lond.) 234, 152–153 (1971)Google Scholar
  9. Asatoor, A.M., Galman, B.R., Johnson, J.R., Milne, M.D.: The excretion of dexamphetamine and its derivatives. Brit. J. Pharmacol. 24, 293–300 (1965)PubMedGoogle Scholar
  10. Axelrod, J.: Studies on sympathomimetic amines. II. The biotransformation and physiological disposition of D-amphetamine, D-p-hydroxyamphetamine and D-amphetamine. J. Pharmacol. exp. Ther. 110, 315–326 (1954a)PubMedGoogle Scholar
  11. Axelrod, J.: Enzymatic demethylation of sympathomimetic amines. Fed. Proc. 13, 332 (1954b)Google Scholar
  12. Axelrod, J.: The enzymatic deamination of amphetamine (Benzedrine). J. biol. Chem. 214, 753–763 (1955)PubMedGoogle Scholar
  13. Baggot, J.D., Davis, L.E.: A comparative study of the pharmacokinetics of amphetamine. Res. Vet. Sci. 14, 207–215 (1973)PubMedGoogle Scholar
  14. Baggot, J.D., Davis, L.E., Neff, C.A.: Extent of plasma protein binding of amphetamine in different species. Biochem. Pharmacol. 21, 1813–1816 (1972)PubMedGoogle Scholar
  15. Beckett, A.H., Bélanger, P.M.: The identification of three new metabolic products of phentermine after liver microsomal incubation. Xenobiotica 4 (8), 509–519 (1974)PubMedGoogle Scholar
  16. Beckett, A.H., Boyes, R.N., Tucker, Q.T.: Use of the analogue computer to examine the quantitative relation between urinary pH and kidney reabsorption of drugs partially ionized at physiological pH. J. Pharm. (Lond.) 90, 277–282 (1968)Google Scholar
  17. Beckett, A.H., Brookes, L.G.: The absorption and urinary excretion in man of fenfluramine and its main metabolite. J. Pharm. (Lond.) 19, 42S–49S (1967)Google Scholar
  18. Beckett, A.H., Brookes, L.G.: The effect of chain and ring substitution on the metabolism, distribution and biological action of amphetamines. In: Costa, F., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp. 109–120. New York: Raven Press 1970Google Scholar
  19. Beckett, A.H., Courts, R.T., Ogunbona, F.A.: Metabolism of amphetamines. Identification of N-oxygenated products by gas chromatography and mass spectrometry. J. Pharm. (Lond.) 25, 708–717 (1973)Google Scholar
  20. Beckett, A. H., Rowland, M.: Urinary excretion of methylamphetamine in man. Nature (Lond.) 206, 1260–1261 (1965a)Google Scholar
  21. Beckett, A.H., Rowland, M.: Urinary excretion kinetics of methylamphetamine in man. J. Pharm. (Lond.) 17, Suppl., pp. 109S–114S (1965b)Google Scholar
  22. Beckett, A.H., Rowland, M.: Urinary excretion kinetics of amphetamine in man. J. Pharm. (Lond.) 17, 628–639 (1965c)Google Scholar
  23. Beckett, A.H., Rowland, M., Turner, P.: Influence of urinary pH on excretion of amphetamine. Lancet 1, 303 (1965)PubMedGoogle Scholar
  24. Beckett, A.H., Salmon, J.A., Mitchard, M.: The relation between blood levels and urinary excretion of amphetamine under controlled acidic and under fluctuating urinary pH values using [14C] amphetamine. J. Pharm. (Lond.) 21, 251–258 (1969)Google Scholar
  25. Benakis, A., Thomasset, M.: Metabolism of amphetamines and their interaction with barbiturates and SKF-525A. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp. 153–164. New York: Raven Press 1970Google Scholar
  26. Benington, F., Morin, R.D., Clark, L.C.: Behavioral and neuropharmacological actions of N-alkylhydroxylamines and their O-methyl ethers. J. med. Chem. 8, 100–104 (1965)PubMedGoogle Scholar
  27. Beregi, L.G., Hugon, P., LeDourarec, J.C., Laubie, M., Duhault, J.: Structure activity relationships in CF3 substituted phenethylamines. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp.21–61. New York: Raven Press 1970Google Scholar
  28. Biel, J.H.: Structure-activity relationships of amphetamine and derivatives. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp.3–19. New York: Raven Press 1970Google Scholar
  29. Blaschko, H., Richter, D., Schlossman, H.: The oxidation of adrenaline and other amines. Biochem. J. 31, 2187–2196 (1937)PubMedGoogle Scholar
  30. Boissier, J.R., Hirtz, J., Dumont, C., Gérardin, A.: Some aspects of the metabolism of anorexic phenyl isopropylamines in the rat. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp. 141–152. New York: Raven Press 1970Google Scholar
  31. Borella, L.F.: Effect of chlorpromazine on the urinary excretion of amphetamine in rats. Pharmacologist 11, 292 (1969)Google Scholar
  32. Borella, L., Herr, F., Wejdan, A.: Prolongation of certain effects of amphetamine by chlorpromazine. Canad. J. Physiol. Pharmacol. 47, 7–13 (1969)Google Scholar
  33. Bridges, J.W., Gorrod, J.W., Parke, D.V.: Biological oxidation of nitrogen in organic molecules. London: Taylor and Francis 1972Google Scholar
  34. Brodie, B.B., Cho, A.K., Gessa, G.L.: Possible role of p-hydroxynorephedrine in the depletion of norepinephrine induced by D-amphetamine and in tolerance to this drug. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp.217–230. New York: Raven Press 1970Google Scholar
  35. Brodie, B.B., Gillette, J. R., LaDu, B.N.: Enzymatic metabolism of drugs and other foreign compounds. Ann. Rev. Biochem. 27, 427–454 (1958)PubMedGoogle Scholar
  36. Bruce, R.B., Maynard, W.R. Jr.: Determination of amphetamine and related amines in blood by gas chromatography. Analyt. Chem. 41, 977–979 (1969)Google Scholar
  37. Caldwell, J., Dring, L.G., Williams, R.T.: Norephedrines as metabolites of 14C amphetamine in urine in man. Biochem. J. 129, 23–24 (1972a)PubMedGoogle Scholar
  38. Caldwell, J., Dring, L.G., Williams, R.T.: Biliary excretion of amphetamine and methamphetamine in the rat. Biochem. J. 129, 25–29 (1972b)PubMedGoogle Scholar
  39. Caldwell, J., Dring, L.G., Williams, R.T.: Metabolism of (14C)methamphetamine in man, the guinea pig and the rat. Biochem. J. 129, 11–22 (1972c)PubMedGoogle Scholar
  40. Caldwell, J., Sever, P. S.: The biochemical pharmacology of abused drugs. Clin. Pharmacol. Ther. 16, 625–638 (1974)PubMedGoogle Scholar
  41. Campbell, D.B.: A method for the measurement of therapeutic levels of D-amphetamine in human plasma. J. Pharm. (Lond.) 21, 129–130 (1969)Google Scholar
  42. Carlton, P. L.: Potentiation of the behavioural effects of amphetamine by imipramine. Psychopharmacologia (Bed.) 2, 364 (1961)Google Scholar
  43. Cavanaugh, J.H., Griffith, J.D., Oates, J.A.: Effect of amphetamine on the pressor response to tyramine. Formation of p-hydroxynorephedrine from amphetamine in man. Clin. Pharmacol. Ther. 11, 656–664 (1970)PubMedGoogle Scholar
  44. Chidsey, C.A., Harrison, D.C., Braunwald, E.: Release of norepinephrine from the heart by vasoactive amines. Proc. Soc. exp. Biol. (N.Y.) 109, 488–490 (1962)Google Scholar
  45. Cho, A.K., Lindeke, B., Jenden, D.J.: Gas chromatography—Mass spectrometry in the distribution and metabolism of phentermin. In: Frigerio, A., Caraguoli, N. (Eds.): Mass Spectrometry in Biochemistry and Medicine. New York: Raven Press 1974aGoogle Scholar
  46. Cho, A.K., Lindeke, B., Sum, C.Y.: The N-hydroxylation of phentermine (2-methyl-2-amino-1-phenylpropane). Properties of the enzyme system. Drug Metab. Dispos. 2, 1–8 (1974b)PubMedGoogle Scholar
  47. Chrusciel, T.L., Chrusciel, M.: Selected bibliography on detection of dependence—producing drugs in body fluids. WHO offset publication No. 17, Geneva 1975Google Scholar
  48. Connell, P.H.: Amphetamine psychosis. Maudsley Monographs No.5. London: Chapman & Hall 1958Google Scholar
  49. Conney, A.H.: Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19, 317–366 (1967)PubMedGoogle Scholar
  50. Consolo, S., Dolfini, F., Garattini, S., Valzelli, L.: Desipramine and amphetamine metabolism. J. Pharm. (Lond.) 19, 253–256 (1967)Google Scholar
  51. Consolo, S., Garattini, S., Ghielmetti, R., Valzelli, L.: Concentrations of amphetamine in the brain of normal or aggressive mice. J. Pharm. (Lond.) 17, 666 (1965)Google Scholar
  52. Cooper, J.R., Axelrod, J., Brodie, B.B.: Inhibitory effects of β-diethylaminoethyl diphenylpropyl-acetate on a variety of drug metabolic pathways in vitro. J. Pharmacol. exp. Ther. 112, 55–63 (1954)PubMedGoogle Scholar
  53. Costa, E., Groppetti, A.: Biosynthesis and storage of catecholamines in tissues of rats injected with various doses of D-amphetamine. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp. 231–255. New York: Raven Press 1970Google Scholar
  54. Creaven, P.J., Barber, T.: The effect of ethanol on the metabolism of amphetamine by the rat. J. Pharm. (Lond.) 21, 859–860 (1969)Google Scholar
  55. Creaven, P. J., Barber, T., Roach, M.K.: The interaction of ethanol and amphetamine metabolism. J. Pharm. (Lond.) 22, 828–831 (1970)Google Scholar
  56. Creveling, C.R., Daly, J.W., Witkop, B., Udenfriend, S.: Substrates and inhibitors of dopamine-β-oxidase. Biochim. biophys. Acta (Amst.) 64, 125–134 (1962)Google Scholar
  57. Creveling, C.R., Daly, J.W., Witkop, B., Udenfriend, S.: Substrates and inhibitors of dopamine-β-olism. Ann. N.Y. Acad. Sci. 179, 493–501 (1971)Google Scholar
  58. Daly, J.W., Creveling, C.R., Witkop, B.: The chemorelease of norepinephrine from mouse hearts. Structure-activity relationships. I. Sympathomimetic and related amines. J. med. Chem. 9, 280–284 (1966)PubMedGoogle Scholar
  59. Davis, J.M., Janowsky, D.S.: Amphetamine and methylphenidate psychosis. In: Usdin, E., Snyder, S. (Eds.): Frontiers in Catecholamine Research, pp.977–981. Oxford: Pergamon Press 1973Google Scholar
  60. Davis, J.M., Kopin, I.K., Lemberger, L., Axelrod, J.: Effect of urinary pH on amphetamine metabolism. Ann. N.Y. Acad. Sci. 179, 493–501 (1971)PubMedGoogle Scholar
  61. Dingell, J.V., Bass, A.D.: Inhibition of the hepatic metabolism of amphetamine by the rat. Biochem. Pharmacol. 18, 1535–1538 (1969)PubMedGoogle Scholar
  62. Dring, L.G., Smith, R.L., Williams, R.T.: The fate of amphetamine in man and other animals. J. Pharm. (Lond.) 18, 402–404 (1966)Google Scholar
  63. Dring, L.G., Smith, R.L., Williams, R.T.: The metabolic fate of amphetamine in man and other species. Biochem. J. 116, 425–435 (1970)PubMedGoogle Scholar
  64. Duhault, J., Verdavaienne, C.: Modification du taux de Serotonine cérébrale chez le rat par les trifluoromethyl-phenyl-2-ethylamino-propane (fenfluramine 768S). Arch. int. Pharmacodyn. 170, 276–286 (1967)PubMedGoogle Scholar
  65. ElGuedri, H., Jacquot, C, Rapin, J., Cohen, Y.: Métabolisme, distribution régionale et pharmacocinétique de la parahydroxy-noréphédrine dans le cerveau du rat. J. Pharmacol. (Paris) 4, 453 (1973)Google Scholar
  66. Ellison, T., Gutzait, L., vanLoon, E.J.: The comparative metabolism of D-amphetamine-14C in the rat, dog and monkey. J. Pharmacol. exp. Ther. 152, 383–387 (1966)PubMedGoogle Scholar
  67. Ellison, T., Okun, R., Silverman, A., Siegel, M.: Metabolie fate of amphetamine in the cat during development of tolerance. Arch. int. Pharmacodyn. 190, 135–149 (1971)PubMedGoogle Scholar
  68. Faraj, B.A., Israili, Z.H., Perel, J.M., Jenkins, M.L., Holtzman, S.G., Cucinell, S.A., Dayton, P.G.: Metabolism and disposition of methylphenidate-14C: studies in man and animals. J. Pharmacol. exp. Ther. 191, 535–547 (1974)PubMedGoogle Scholar
  69. Feller, D.R., Malspeis, L.: Metabolism of d(-)-ephedrine and L(+)-ephedrine in the microsomal and 9000 × g supernatant of the rabbit liver. Fed. Proc. 30, 225abs. (1971)Google Scholar
  70. Foreman, R.L., Siegel, F.P., Mrtek, R.G.: Synthesis of deutero-1-amphetamine sulfate. J. pharm. Sci. 58, 189–192 (1969)PubMedGoogle Scholar
  71. Franklin, M.R.: Complexes of metabolites of amphetamines with hepatic cytochrome, Xenobiotica 4, 133–142 (1974)Google Scholar
  72. Franksson, G., Änggård, E.: The plasma protein binding of amphetamine, catecholamines and related compounds. Acta pharmacol. (Kbh.) 28, 209–214 (1970)Google Scholar
  73. Fuller, R.W., Hines, C. W., Mills, J.: Lowering of brain serotonin levels by chloroamphetamines. Biochem. Pharmacol. 14, 483–488 (1965)PubMedGoogle Scholar
  74. Fuller, R.W., Molloy, B.B., Rousch, B.W., Hauser, K.M.: Disposition and behavioral effects of amphetamine and β, β-difluoroamphetamine in mice. Biochem. Pharmacol. 21, 1299–1307 (1972)PubMedGoogle Scholar
  75. Fuller, R.W, Perry, K.W, Baker, J.C., Parli, J., Lee, N., Day, W.A, Molloy, B.B.: Comparison of the active and the hydroxylamine derivatives of 4-chloroamphetamine as depletors of brain 5-hydroxyindoles. Biochem. Pharmacol. 23, 3267–3272 (1974)PubMedGoogle Scholar
  76. Fuller, R.W., Snoddy, H.D., Molloy, B.B.: Effect of β, β-difluoro substitution on the disposition and pharmacological effects of 4-chloroamphetamine in rats. J. Pharmacol. exp. Ther. 184, 278–284 (1973)PubMedGoogle Scholar
  77. Gill, J.R., Mason, D.T., Bartter, F.C.: Effects of hydroxy-amphetamine (Paredrine) on the function of the sympathetic nervous system in normotensive subjects. J. Pharmacol. exp. Ther. 155, 288–295 (1967)PubMedGoogle Scholar
  78. Glowinski, J., Axelrod, J.: Effect of drugs on the uptake, release and metabolism of 3H-norepinephrine in the rat brain. J. Pharmacol. exp. Ther. 149, 43–49 (1965)PubMedGoogle Scholar
  79. Glowinski, J., Axelrod, J., Iversen, L.L.: Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism. of H3-norepinephrine and H3-dopamine. J. Pharmacol. exp. Ther. 153, 30–41 (1966)PubMedGoogle Scholar
  80. Goldstein, M., Anagnoste, B.: The conversion in vivo of D-amphetamine to (+)-p-hydroxynorephedrine. Biochim. biophys. Acta (Amst.) 107, 166 (1965)Google Scholar
  81. Goldstein, M., Contrera, J.F.: The substrate specificity of phenylamine β-hydroxylase. J. biol. Chem. 237, 1898–1902 (1962)PubMedGoogle Scholar
  82. Goldstein, M., McKereghan, M.R., Lauber, E.: The stereospecificity of the enzymatic amphetamine β-hydroxylation. Biochim. biophys. Acta (Amst.) 89, 191–193 (1964)Google Scholar
  83. Gorrod, J. W.: The metabolism and excretion of “amphetamines” in man. In: Usdin, E., Snyder, S. (Eds.): Frontiers in Catecholamine Research, pp.945–950. Oxford: Pergamon Press 1973Google Scholar
  84. Gram, T.E.: Concepts in biochemical pharmacology. In: Brodie, B.B., Gillette, J.R. (Eds.): Handbook of Experimental Pharmacology, Vol. XXVIII, p. 334. New York: Springer 1971Google Scholar
  85. Groppetti, A., Costa, E.: Factors affecting the rate of disappearance of amphetamine in rats. Int. J. Neuropharmacol. 8, 209–215 (1969)PubMedGoogle Scholar
  86. Gunne, L.-M.: The urinary output of D- and L-amphetamine in man. Biochem. Pharmacol. 16, 863–869 (1967)PubMedGoogle Scholar
  87. Gunne, L.-M., Änggård, E.: Pharmacokinetic studies with amphetamines—Relationship to neuropsychiatric disorders. J. Pharmacokinet. Biopharm. 1, 481–495 (1973)Google Scholar
  88. Harrison, J.W.E., Ambrus, C.M., Ambrus, J.L.: Tolerance of rats toward amphetamine and methamphetamine. J. Amer. Pharm. 41, 539–541 (1952)Google Scholar
  89. Henderson, P.T., Vree, T.B., van Ginneken, C.A., van Rossum, J.M.: Activation energies of α-C-oxidation and N-oxidation of N-alkyl-substituted amphetamines by rat liver microsomes. Stereochemistry and deuterium isotope effects. Xenobiotica 4 (2), 121–130 (1974)PubMedGoogle Scholar
  90. Hoffström, I., Orrenius, S.: The interaction of various N-substituted amphetamines with cytochrome P-450 of rabbit liver microsomes. FEBS Letters 31 (2), 205–208 (1973)PubMedGoogle Scholar
  91. Holland, G.F., Buck, C.J., Weissman,A.: Anorexigenic agents. Aromatic substituted 1-phenyl-2-propylamines. J. med. Chem. 6, 519–524 (1963)PubMedGoogle Scholar
  92. Hucker, H.B., Michniewicz, B. M., Rhodes, R.E.: Phenyl-2-propanone oxime—an intermediate in the oxidative deamination of D-(+)-amphetamine. Pharmacologist 12, 255 (1970)Google Scholar
  93. Hucker, H.B., Michniewicz, B.M., Rhodes, R.E.: Phenylacetone oxime—an intermediate in the oxidative deamination of amphetamine. Biochem. Pharmacol. 20, 2123–2128 (1971)PubMedGoogle Scholar
  94. Janssen, P.A.J.: Chemical and pharmacological classification of neuroleptics. In: Bobon, D.P., Janssen, P.A.J. (Eds.): Neuroleptics, p.33. Basel-Munich-Paris-New York: S. Karger 1970Google Scholar
  95. Jönsson, L.E., Gunne, L.-M., Änggård, E.: Effects of α-methyl-tyrosine in amphetamine dependent subjects. Europ. J. clin. Pharmacol. 2, 27–29 (1969)Google Scholar
  96. Jönsson, L.E., Änggard, E., Gunne, L.-M.: Blockade of intravenous amphetamine euphoria in man. Clin. Pharmacol. Ther. 12, 889–896 (1971)PubMedGoogle Scholar
  97. Jonsron, J.: Hydroxylation of amphetamine to parahydroxyamphetamine by rat liver microsomes. Biochem. Pharmacol. 23, 3191–3197 (1974)Google Scholar
  98. Jonsson, J., Lewander, T.: Effects of diethyldithiocarbamate and ethanol on the in vivo metabolism and pharmacokinetics of amphetamine in the rat. J. Pharm. (Lond.) 25, 589–591 (1973)Google Scholar
  99. Jori, A., Caccia, S.: Distribution of amphetamine and its hydroxylated metabolites in various areas of the rat brain. J. Pharm. (Lond.) 26, 746–748 (1974)Google Scholar
  100. La Du, B.N., Mandel, H.G., Way, E.L. (Eds.): Fundamentals of drug metabolism and drug disposition. Baltimore, Md.: Williams and Wilkins 1971Google Scholar
  101. Lawlor, R.B., Trivedi, M.C., Yelnosky, J.: A determination of the anorexigenic potential of D,L-amphetamine, D-amphetamine, L-amphetamine and phentermine. Arch. int. Pharmacodyn. 179,401–407(1969)PubMedGoogle Scholar
  102. LeDouarec, J.C., Neveu, C.: Pharmacology and biochemistry of fenfluramine. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp.75–105. New York: Raven Press 1970Google Scholar
  103. LeDouarec, J.C, Schmitt, H., Laubie, M.: Etude pharmacologique de la fenfluramine et de ses isomers optiques. Arch. int. Pharmacodyn. 161, 206–232 (1966)Google Scholar
  104. Lemberger, L., Witt, E.D., Davis, J.M., Kopin, I. J.: The effects of haloperidol and chlorpromazine on amphetamine metabolism and amphetamine stereotype behaviour in the rat. J. Pharmacol. exp. Ther. 174, 428–433 (1970)PubMedGoogle Scholar
  105. Lewander, T.: Effects of amphetamine on urinary and tissue levels of catecholamines in rats after inhibition of its metabolism by desmethylimipramine. Europ. J. Pharmacol. 5, 1–9 (1968)Google Scholar
  106. Lewander, T.: Influence of various psychoactive drugs on the in vivo metabolism of D-amphetamine in the rat. Europ. J. Pharmacol. 6, 38–44 (1969)Google Scholar
  107. Lewander, T.: Catecholamine turnover studies in chronic amphetamine intoxication. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp.317–329. New York: Raven Press 1970Google Scholar
  108. Lewander, T.: Displacement of brain and heart noradrenaline by p-hydroxynorephedrine after administration of p-hydroxyamphetamine. Acta pharmacol. (Kbh.) 29, 20–32 (1971a)Google Scholar
  109. Lewander, T.: On the presence of p-hydröxynorephedrine in the rat brain and heart in relation to changes in catecholamine levels after administration of amphetamine. Acta pharmacol. (Kbh.) 29, 33–48 (1971b)Google Scholar
  110. Lindeke, B., Cho, A.K., Thomas, T.L., Michelsen, L.: Microsomal N-hydroxylation of phenylalkylamines. Acta pharm. suec. 10, 493–506 (1973)PubMedGoogle Scholar
  111. Maickel, R.P., Cox, R.H., Jr., Miller, F.P., Segal, D.S., Russell, R.W.: Correlation of brain levels of drugs with behavioral effects. J. Pharmacol. exp. Ther. 165, 216–224 (1969)PubMedGoogle Scholar
  112. Mann, P.J.G., Quastel, J.H.: Benzedrine (β-phenylisopropylamine) and brain metabolism. Biochem. J. 34, 414–431 (1940)PubMedGoogle Scholar
  113. McMahon, R.E.: The demethylation in vitro of N-methyl barbiturates and related compounds by mammalian liver microsomes. Biochem. Pharmacol. 12, 1225 (1963)PubMedGoogle Scholar
  114. Milne, M.D., Scribner, B.H., Crawford, M.A.: Non-ionic diffusion and the excretion of weak acids and bases. Amer. J. Med. 24, 709–729 (1958)PubMedGoogle Scholar
  115. Nieforth, K.A.: Psychotomimetic phenetylamines. J. pharm. Sci. 60, 655–665 (1971)PubMedGoogle Scholar
  116. Opitz, K.: Adipokinetic action of amphetamine—a study in the beagle dog. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp.627–639. New York: Raven Press 1970Google Scholar
  117. Pardridge, W.M., Connor, J.D.: Saturable transport of amphetamine across the blood-brain barrier. Experientia (Basel) 29 (3), 302–304 (1973)Google Scholar
  118. Parli, C.J., McMahon, R.E.: The mechanism of microsomal deamination: heavy isotope studies. Drug. Metab. Dispos. 1, 337–341 (1973)PubMedGoogle Scholar
  119. Parli, C.J., Wang, N., McMahon, R.E.: The mechanism of the oxidation of D-amphetamine by rabbit liver oxygenase. Oxygen-18 studies. Biochem. biophys. Res. Commun. 43, 1204–1209 (1971a)PubMedGoogle Scholar
  120. Parli, C.J., Wang, N., McMahon, R.E.: The enzymatic N-hydroxylation of an imine. A new cytochrome P-450-dependent reaction catalyzed by hepatic microsomal monooxygenases. J. biol. Chem. 246, 6953–6955 (1971b)PubMedGoogle Scholar
  121. Pawan, G.L.S.: Metabolic studies on the effect of fenfluramine in man and the mouse. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp.641–651. New York: Raven Press 1970Google Scholar
  122. Platt, D.S., Cockrill, B.L.: Biochemical changes in rat liver in response to treatment with drugs and other agents. III. Effects of centrally acting drugs. Biochem. Pharmacol. 18, 459–473 (1969)PubMedGoogle Scholar
  123. Pletscher, A., Bartholini, G., Bruderer, H., Burkard, W.P., Gey, K.F.: Chlorinated arylalkylamines affecting the cerebral metabolism of 5-hydroxytryptamine. J. Pharmacol. exp. Ther. 145, 344–350(1964)PubMedGoogle Scholar
  124. Pratesi, P., Blaschko, H.: Specificity of amine oxidase for optically active substrates and inhibitors. Brit. J. Pharmacol. 14, 256–260 (1959)PubMedGoogle Scholar
  125. Quinn, G.P., Cohn, M.M., Reid, M.B., Greenhard, P., Weiner,M.: The effect of formulation on phenmetrazine levels in man studied by a sensitive analytical method. Clin. Pharmacol. Ther. 8, 369–373 (1967)PubMedGoogle Scholar
  126. Rangno, R.E., Kaufman, J.S., Cavanaugh, J.H., Island, D., Watson, J.T., Oates, J.: Effects of a false neurotransmitter, p-hydroxynorephedrine, on the function of adrenergic neurons in hypertensive patients. J. clin. Invest. 52, 952–960 (1973)PubMedGoogle Scholar
  127. Rating, D., Honecker, H., Broermann, J., Strauss, S.: Hexobarbital-sleeping time and amphetamine motility after subchronic tetrahydrocannabinol treatment. Acta pharmacol. (Kbh.) 29, suppl.4, p.92 (1971)Google Scholar
  128. Rommelspacher, H., Honecker, H., Schulze, G., Strauss, S.M.: The hydroxylation of D-amphetamine by liver microsomes of the small rat. Biochem. Pharmacol. 23, 1065–1071 (1974)PubMedGoogle Scholar
  129. Rosso, R., Dolfini, L., Franchi, G.: Metabolism of amphetamine in tumour bearing rats. Biochem. Pharmacol. 17, 633–634 (1968)PubMedGoogle Scholar
  130. Rossum, J.M. van, Simons, F.: Locomotor activity and anorexogenic action. Psyehopharmacologia (Berl.) 14, 248–254 (1969)Google Scholar
  131. Rowland, M.: Amphetamine blood and urine levels in man. J. pharm. Sci. 58, 508–509 (1969)PubMedGoogle Scholar
  132. Rutledge, C.O.: The mechanisms by which amphetamine inhibits oxidative deamination of norepinephrine in brain. J. Pharmacol. exp. Ther. 171, 188–195 (1970)PubMedGoogle Scholar
  133. Schanker, L.S.: The passage of drugs across body membranes. Pharmacol. Rev. 14, 501–530 (1962)PubMedGoogle Scholar
  134. Schweitzer, J.W., Friedhoff, A.J.: In: Zarafonetis, C.J.D. (Ed.): Proc. Int. Conf. on Drug Abuse. Philadelphia, Pa., 1972Google Scholar
  135. Schweitzer, J.W., Friedhoff, A.J., Angrist, B.M., Gershon, S.: Excretion of p-methoxyamphetamine administered to humans. Nature (Lond.) 229, 133–134 (1971)Google Scholar
  136. Sever, P.S., Caldwell, J., Dring, L.G., Williams, R.T.: The metabolism of amphetamine in dependent subjects. Europ. J. clin. Pharmacol. 6, 177–180 (1973)Google Scholar
  137. Shulgin, A.T., Sargent, F.: Structure-activity relationships in the amphetamine series. In: Ethnopharmacological Search for Psychoactive Drugs, U.S. Public Health Service Publication No. 1645, p. 228. Washington: U.S. Government Printing Office 1967Google Scholar
  138. Sjoerdsma, A., Studnitz, W. von: Dopamine-β-oxidase activity in man, using hydroxyamphetamine as substrate. Brit. J. Pharmacol. 20, 278–284 (1963)PubMedGoogle Scholar
  139. Smith, R.L., Dring, L.G.: Patterns of metabolism of the β-phenylisopropylamines in man and other species. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp. 121–139. New York: Raven Press 1970Google Scholar
  140. Smythies, J.R., Johnsson, V.S., Bradley, R.J., Benington, F., Morin, R.D., Clark, L.C: Some new behaviour disrupting amphetamines and their significance. Nature (Lond.) 216, 128–129 (1967)Google Scholar
  141. Snyder, S. H.: Catecholamines in the brain as mediators of amphetamine psychosis. Arch. gen. Psychiat. 27, 169–179 (1972)PubMedGoogle Scholar
  142. Snyder, S.H., Faillace, L., Hollister, L.: 2,5-Dimethoxy-4-methylamphetamine (STP): A new hallucinogenic drug. Science 158, 669–670 (1967)PubMedGoogle Scholar
  143. Stein, L.: Self-stimulation of the brain and the central stimulant action of amphetamine. Fed. Proc. 23, 836–850 (1964)PubMedGoogle Scholar
  144. Sulser, F., Dingell, J.V.: The potentiation and blockade of the central action of amphetamine by chlorpromazine. Biochem. Pharmacol. 17, 634–636 (1968)PubMedGoogle Scholar
  145. Sulser, F., Owens, M.C., Dingell, J.V.: On the mechanism of amphetamine potentiation by desipramine (DMI), Life Sci. 5, 2005–2010 (1966)Google Scholar
  146. Sulser, F., Sanders-Bush, E.: Halogen substitution of amphetamine. Biochemical and pharmacological consequences, Frontiers in Catecholamine Research, pp. 995–1001. Pergamon Press 1973Google Scholar
  147. Svensson, T.H.: Functional and biochemical effects of D- and L-amphetamine on central catecholamine neurons. Naunyn-Schmiedebergs Arch. Pharmacol. 271, 170–180 (1971)PubMedGoogle Scholar
  148. Taylor, K.B.: Dopamine-β-hydroxylase. Stereochemical course of the reaction. J. biol. Chem. 249, 454–458 (1974)PubMedGoogle Scholar
  149. Taylor, K.M., Snyder, S.H.: Differential effects of D- and L-amphetamine on behavior and on catecholamine disposition in dopamine and norepinephrine containing neurons of the rat brain. Brain. Res. 28, 295–309 (1971)PubMedGoogle Scholar
  150. Taylor, W.A., Sulser, F.: Effects of amphetamine and its hydroxylated metabolites on central noradrenergic mechanisms. J. Pharmacol. exp. Ther. 185, 620–632 (1973)PubMedGoogle Scholar
  151. Thoenen, H., Huerlimann, A., Gey, K.F., Haefely, W.: Liberation of p-hydroxynorephedrine from cat spleen by sympathetic nerve stimulation after pretreatment with amphetamine. Life Sci. 5, 1715–1722 (1966)PubMedGoogle Scholar
  152. Valzelli, L., Consolo, S., Morpurgo, C.: Influence of imipramine-like drugs on the metabolism of amphetamine. In: Proc. of the First Int. Symp. on Antidepressant Drugs. Excerpta Medica, Amsterdam, p. 61, 1967Google Scholar
  153. Valzelli, L., Dolfini, E., Tansella, M., Garattini, S.: Activity of centrally acting drugs on amphetamine metabolism. J. Pharm. (Lond.) 20, 595–599 (1968)Google Scholar
  154. van Praag, H.M., Korf, J., van Wandenberg, F., Kits, F.P.: Influencing the human indolamine metabolism by means of chlorinated amphetamine derivatives with antidepressive action. Psychopharmacologica (Bed.) 13, 145–160 (1968)Google Scholar
  155. Vree, T.B.: Pharmacokinetics and metabolism of amphetamines. Ph. D. Thesis, Univ. of Nijwegen, Netherlands (1973)Google Scholar
  156. Vree, T.B., Gorgels, J.P.M.C., Muskens, M., vanRossum, J.M.: Deuterium isotope effects in the metabolism of N-alkyl substituted amphetamines in man. Clin. chim. Acta 34, 333–344 (1971b)PubMedGoogle Scholar
  157. Vree, T.B., Muskens, M.J., vanRossum, J.M.: Deuterium isotope effects and stereochemistry in the dealkylationand deamination of amphetamines and ephedrines in man. Xenobiotica 1, 74 (1971a)Google Scholar
  158. Vree, T.B., vanRossum, J.M.: Some physicochemical properties of amphetamines and related drugs. J. Pharm. (Lond.) 21, 774 (1969)Google Scholar
  159. Vree, T.B., vanRossum, J.M.: Kinetics of metabolism and excretion of amphetamines in man. In: Costa, E., Garattini, S. (Eds.): Amphetamines and Related Compounds, pp.165–190. New York: Raven Press 1970Google Scholar
  160. Weiner, J.M., Mudge, G.H.: Renal tubular mechanisms for excretion of organic acids and bases. Amer. J. Med. 36, 743–762 (1964)PubMedGoogle Scholar
  161. Wenger, G.R., Rutledge, C. O.: A comparison of the effects of amphetamine and its metabolites, p-hydroxy-amphetamine and p-hydroxynorepinephrine on uptake release and catabolism of 3H-norepinephrine in cerebral cortex of rat brain. J. Pharmacol. exp. Ther. 189, 725–732 (1974)PubMedGoogle Scholar
  162. Wilkinson, G.R., Beckett, A.H.: Absorption, metabolism and excretion of the ephedrines in man. I. The influence of urinary pH and urine volume output. J. Pharmacol. exp. Ther. 162, 139–147 (1968)PubMedGoogle Scholar
  163. Williams, R.T., Caldwell, J., Dring, L.G.: Comparative metabolism of some amphetamines in various species. In: Usdin, E., Snyder, S. (Eds.): Frontiers in Catecholamine Research, Pergamon Press, Oxford, pp.927–932 (1973)Google Scholar
  164. Yokel, R.A., Pickens, R.: Self-administration of optical isomers of amphetamine and methyl-amphetamine by rats. J. Pharmacol. exp. Ther. 187, 27–33 (1973)PubMedGoogle Scholar
  165. Zirkle, C.L., Kaiser, C.: Monoamine oxidase inhibitors (nonhydrazines). In: Psychopharmacological Agents, I., p. 474. New York: Academic Press 1964Google Scholar
  166. 1.
    Arnfred and Randrup, 1968Google Scholar
  167. 2.
    Babbini et al., 1971Google Scholar
  168. 3.
    Berger et al., 1973Google Scholar
  169. 4.
    Cools and van Rossum, 1970Google Scholar
  170. 5.
    Cools, 1971Google Scholar
  171. 6.
    Corrodi et al., 1970Google Scholar
  172. 7.
    Costall and Naylor, 1972Google Scholar
  173. 8.
    Costall and Naylor, 1973Google Scholar
  174. 9.
    Costall, et al. 1972aGoogle Scholar
  175. 10.
    Costallet al., 1972bGoogle Scholar
  176. 11.
    Costallet al., 1972eGoogle Scholar
  177. 12.
    Coxand Tha, 1973Google Scholar
  178. 13.
    Divac, 1972Google Scholar
  179. 14.
    DelRioand Fuentes, 1969Google Scholar
  180. 15.
    Ellinwoodand Balster, 1974Google Scholar
  181. 16.
    Ellinwoodet al., 1972Google Scholar
  182. 17.
    Ernst, 1967aGoogle Scholar
  183. 18.
    Ernst, 1967bGoogle Scholar
  184. 19.
    Everettet al., 1957Google Scholar
  185. 20.
    Fischerand Heller, 1967Google Scholar
  186. 21.
    Fog, 1970Google Scholar
  187. 22.
    Fog, et al., 1967Google Scholar
  188. 23.
    Funatogawa, 1964Google Scholar
  189. 24.
    Fuxeand Ungerstedt, 1970Google Scholar
  190. 25.
    Goetzand Klawans, 1974Google Scholar
  191. 26.
    Halliwellet al., 1964Google Scholar
  192. 27.
    Hasselager, et al., 1972Google Scholar
  193. 28.
    Herman, 1967Google Scholar
  194. 29.
    Janssenet al., 1965Google Scholar
  195. 30.
    Janssenet al., 1967Google Scholar
  196. 31.
    Janssenet al., 1968Google Scholar
  197. 32.
    Jonssonand Gunne, 1972Google Scholar
  198. 33.
    Klawanset al., 1972Google Scholar
  199. 34.
    Klawans, et al., 1974Google Scholar
  200. 35.
    Klingenstein, et al., 1973Google Scholar
  201. 36.
    Lal, et al., 1971Google Scholar
  202. 37.
    Laland Sourkes, 1972aGoogle Scholar
  203. 38.
    Laland Sourkes, 1972bGoogle Scholar
  204. 39.
    Lal, et al., 1974Google Scholar
  205. 40.
    Lapinand Schelkunov, 1965Google Scholar
  206. 41.
    Lembergeret al., 1970Google Scholar
  207. 42.
    Lewander, 1971dGoogle Scholar
  208. 43.
    Leslieand Maxwell, 1964Google Scholar
  209. 44.
    Majand Przegalinski, 1967Google Scholar
  210. 45.
    Majet al., 1974Google Scholar
  211. 46.
    Matussekand Linsmayer, 1968Google Scholar
  212. 47.
    Mayerand Eybl, 1971Google Scholar
  213. 48.
    McGeer, et al, 1971Google Scholar
  214. 49.
    Mengeand Brand, 1971Google Scholar
  215. 50.
    Morpurgoand Theobald, 1964Google Scholar
  216. 51.
    Morpurgoand Theobald, 1967Google Scholar
  217. 52.
    Müllerand Schoetensack, 1969Google Scholar
  218. 53.
    Munkvadand Randrup, 1966Google Scholar
  219. 54.
    Naylorand Costall, 1971Google Scholar
  220. 55.
    Phillipsand Bradley, 1969Google Scholar
  221. 56.
    Papeschiand Randrup, 1973Google Scholar
  222. 57.
    Quintonand Halliwell, 1963Google Scholar
  223. 58.
    Randrupand Munkvad, 1964Google Scholar
  224. 59.
    Randrupand Munkvad, 1965aGoogle Scholar
  225. 60.
    Randrupand Munkvad, 1965bGoogle Scholar
  226. 61.
    Randrupand Munkvad, 1966Google Scholar
  227. 62.
    Randrupand Munkvad, 1967cGoogle Scholar
  228. 63.
    Randrupet al., 1963Google Scholar
  229. 64.
    Randrupand Jonas, 1967Google Scholar
  230. 65.
    Randrupand Scheel-Krüger, 1966Google Scholar
  231. 66.
    Rossand Renyi, 1967bGoogle Scholar
  232. 67.
    Sanghviand Gershon, 1969Google Scholar
  233. 68.
    Sayers, 1972Google Scholar
  234. 69.
    Sayersand Handley, 1973aGoogle Scholar
  235. 70.
    Sayersand Handley, 1973bGoogle Scholar
  236. 71.
    Sayersand Spencer, 1971Google Scholar
  237. 72.
    Scheel-Krüger, 1971Google Scholar
  238. 73.
    Scheel-Krüger, 1972aGoogle Scholar
  239. 74.
    Scheel-Krügerand Jonas, 1974Google Scholar
  240. 75.
    Schelkunov, 1964Google Scholar
  241. 76.
    Simonet al., 1972Google Scholar
  242. 77.
    Singeret al., 1971Google Scholar
  243. 78.
    Southgateet al., 1971Google Scholar
  244. 79.
    Srmaland Dhawan, 1970Google Scholar
  245. 80.
    Tsengand Walaszek, 1972Google Scholar
  246. 81.
    Wallachand Gershon, 1972Google Scholar
  247. 82.
    Vedernikov, 1970Google Scholar
  248. 83.
    Weineret al., 1973Google Scholar
  249. 84.
    Weissmanand Koe, 1965Google Scholar
  250. 85.
    Weissmanet al., 1966Google Scholar
  251. 86.
    Whiteet al., 1961Google Scholar
  252. 87.
    Zetlerand Moog, 1958Google Scholar
  253. 88.
    Zetleret al., 1960Google Scholar
  254. 89.
    Zetler, 1970Google Scholar
  255. 90.
    Zetlerand Thörner, 1973Google Scholar
  256. 91.
    Ziegleret al., 1972Google Scholar
  257. 92.
    Willneret al., 1970Google Scholar
  258. 93.
    Scheel-Krüger, 1973Google Scholar
  259. 1.
    Abdallah et al., 1974Google Scholar
  260. 2.
    Babbiniet al., 1971Google Scholar
  261. 3.
    Banarjeeand Geh, 1973Google Scholar
  262. 4.
    Banarjeeand Lin, 1973Google Scholar
  263. 5.
    Beauvalletet al., 1966aGoogle Scholar
  264. 6.
    Bergeret al., 1973Google Scholar
  265. 7.
    Blackhamand Spencer, 1969Google Scholar
  266. 8.
    Borellaand Herr, 1971Google Scholar
  267. 9.
    Borellaet al., 1969aGoogle Scholar
  268. 10.
    Borellaet al., 1969bGoogle Scholar
  269. 11.
    Breeseet al., 1973Google Scholar
  270. 12.
    Brown, 1960Google Scholar
  271. 13.
    Buus Lassen, 1973Google Scholar
  272. 14.
    Corrodiet al., 1970Google Scholar
  273. 15.
    Craigmillet al., 1974Google Scholar
  274. 16.
    Davis, 1957Google Scholar
  275. 17.
    Dingellet al., 1967Google Scholar
  276. 18.
    Dominicand Moore, 1969aGoogle Scholar
  277. 19.
    Dominicand Moore, 1969bGoogle Scholar
  278. 20.
    D’Encarnacaoand Anderson, 1970Google Scholar
  279. 21.
    D’Encarnacaoet al., 1969Google Scholar
  280. 22.
    Ernst, 1969Google Scholar
  281. 23.
    Estlerand Ammon, 1967Google Scholar
  282. 24.
    Estleret al., 1970Google Scholar
  283. 25.
    Estlerand Ammon, 1970Google Scholar
  284. 26.
    Evettset al., 1970Google Scholar
  285. 27.
    Fibigeret al., 1973Google Scholar
  286. 28.
    Fibiger, 1973Google Scholar
  287. 29.
    Freemanet al., 1970Google Scholar
  288. 30.
    Freemanand Sulser, 1972Google Scholar
  289. 31.
    Freyand Magnussen, 1968Google Scholar
  290. 32.
    Fuxeand Ungerstedt, 1970Google Scholar
  291. 33.
    Galamboset al., 1967Google Scholar
  292. 34.
    Gardockiet al., 1966bGoogle Scholar
  293. 35.
    Garriottet al., 1967Google Scholar
  294. 36.
    Granaand Sossi, 1967Google Scholar
  295. 37.
    Hasselageret al., 1972Google Scholar
  296. 38.
    Hermanet al., 1971aGoogle Scholar
  297. 39.
    Hollisteret al., 1974Google Scholar
  298. 40.
    Holtzman, 1974Google Scholar
  299. 41.
    Huangand Ho, 1973Google Scholar
  300. 42.
    Hutchinsand Rogers, 1971Google Scholar
  301. 43.
    Irwinet al., 1958Google Scholar
  302. 44.
    Kubena and Barry, 1970Google Scholar
  303. 45.
    Ladischand Baumann, 1971Google Scholar
  304. 46.
    Lapinet al., 1972Google Scholar
  305. 47.
    Lapinand Schelkunov, 1965Google Scholar
  306. 48.
    Lewet al., 1971Google Scholar
  307. 49.
    Lewander, 1971dGoogle Scholar
  308. 50.
    Mabryand Campbell, 1973Google Scholar
  309. 51.
    Majand Przegalinski, 1967Google Scholar
  310. 52.
    Majet al., 1973Google Scholar
  311. 53.
    Majet al., 1972bGoogle Scholar
  312. 54.
    Majet al., 1974Google Scholar
  313. 55.
    Mantegazzaet al., 1968aGoogle Scholar
  314. 56.
    Mantegazzaet al., 1970Google Scholar
  315. 57.
    McGrathand Ketteler, 1963Google Scholar
  316. 58.
    McLeanet al., 1973Google Scholar
  317. 59.
    Menonet al., 1973Google Scholar
  318. 60.
    Menonet al., 1967Google Scholar
  319. 61.
    Mieleet al., 1972Google Scholar
  320. 62.
    Milleret al., 1970Google Scholar
  321. 63.
    Mooreet al., 1970Google Scholar
  322. 64.
    Mooreand Thornburg, 1973Google Scholar
  323. 65.
    Morpurgoand Theobald, 1964Google Scholar
  324. 66.
    Müllerand Schoetensack, 1969Google Scholar
  325. 67.
    Neuburgand Thut, 1974Google Scholar
  326. 68.
    Offermedsrand Potgieter, 1969Google Scholar
  327. 69.
    Offermeierand Potgieter, 1972Google Scholar
  328. 70.
    Pfeifferet al., 1966Google Scholar
  329. 71.
    Pfeifferet al., 1968Google Scholar
  330. 72.
    Phillipsand Bradley, 1969Google Scholar
  331. 73.
    Pirchet al., 1973Google Scholar
  332. 74.
    Proctoret al., 1967Google Scholar
  333. 75.
    Przegalinskiand Kleinrok, 1970Google Scholar
  334. 76.
    Randrupand Munkvad, 1965aGoogle Scholar
  335. 77.
    Randrupand Munkvad, 1965bGoogle Scholar
  336. 78.
    Rechand Stolk, 1970Google Scholar
  337. 79.
    Rolinskiand Scheel-Krüger, 1973Google Scholar
  338. 80.
    van Rossumet al., 1962Google Scholar
  339. 81.
    van Rossumand Hurkmans, 1964Google Scholar
  340. 82.
    Scheel-Krüger, 1972aGoogle Scholar
  341. 83.
    Schlechterand Butcher, 1972Google Scholar
  342. 84.
    van der Schootet al., 1962Google Scholar
  343. 85.
    Segalet al., 1974Google Scholar
  344. 86.
    Sethyet al., 1970Google Scholar
  345. 87.
    Simonet al., 1970 bGoogle Scholar
  346. 88.
    Simonet al., 1972Google Scholar
  347. 89.
    Simonet al., 1970aGoogle Scholar
  348. 90.
    Smith, 1963Google Scholar
  349. 91.
    Smith, 1965Google Scholar
  350. 92.
    Spengler, 1962Google Scholar
  351. 93.
    Stolkand Rech, 1967Google Scholar
  352. 94.
    Stolkand Rech, 1968bGoogle Scholar
  353. 95.
    Stolkand Rech, 1969Google Scholar
  354. 96.
    Stolkand Rech, 1970Google Scholar
  355. 97.
    Sulserand Dingell, 1968a, bGoogle Scholar
  356. 98.
    Sulseret al., 1968Google Scholar
  357. 99.
    Svensson, 1970Google Scholar
  358. 100.
    Tedeschiet al., 1959Google Scholar
  359. 101.
    Thornburgand Moore, 1972Google Scholar
  360. 102.
    Thornburgand Moore, 1973bGoogle Scholar
  361. 103.
    Tsengand Loh, 1974Google Scholar
  362. 104.
    Tripodet al., 1954Google Scholar
  363. 105.
    Török, 1972Google Scholar
  364. 106.
    Weissman, 1972Google Scholar
  365. 107.
    Villarrealet al., 1973Google Scholar
  366. 108.
    Weinstockand Speiser, 1974Google Scholar
  367. 109.
    Ziegleret al., 1972Google Scholar
  368. 110.
    Sulseret al., 1966Google Scholar
  369. 111.
    Creeseand Iversen, 1973Google Scholar
  370. 112.
    Strubeltet al., 1970Google Scholar
  371. 113.
    Tripod, 1952Google Scholar
  372. 1.
    Bernsteinand Latimer, 1968Google Scholar
  373. 2.
    Carlton, 1961bGoogle Scholar
  374. 3.
    Carltonand Didamo, 1961Google Scholar
  375. 4.
    Dalrympleand Stretch, 1971Google Scholar
  376. 5.
    Evans, 1971Google Scholar
  377. 6.
    Fulginitiand Orsingher, 1973Google Scholar
  378. 7.
    Goldbergand Ciofalo, 1969Google Scholar
  379. 8.
    Hansson, 1966Google Scholar
  380. 9.
    Hansson, 1967Google Scholar
  381. 10.
    Holtzman, 1974Google Scholar
  382. 11.
    Johnet al., 1958Google Scholar
  383. 12.
    Lapinand Schelkunov, 1965Google Scholar
  384. 13.
    Maickelet al., 1970Google Scholar
  385. 14.
    McKearney, 1968Google Scholar
  386. 15.
    Milleret al., 1970Google Scholar
  387. 16.
    Molinengo and Ricci-Gamalero, 1970Google Scholar
  388. 17.
    Mooreand Rech, 1967Google Scholar
  389. 18.
    Morpurgoand Theobold, 1964Google Scholar
  390. 19.
    Niemegeerset al., 1970Google Scholar
  391. 20.
    Oliverio, 1967Google Scholar
  392. 21.
    Orsingherand Fulginiti, 1971Google Scholar
  393. 22.
    Orsingherand Fulginiti, 1973Google Scholar
  394. 23.
    Rayand Bivens, 1968Google Scholar
  395. 24.
    Rech, 1964Google Scholar
  396. 25.
    Rechand Moore, 1968Google Scholar
  397. 26.
    Rechand Stolk, 1970Google Scholar
  398. 27.
    Reltzet al., 1972Google Scholar
  399. 28.
    Remingtonand Anisman, 1974Google Scholar
  400. 29.
    Roffmanand Lal, 1971Google Scholar
  401. 30.
    Scheckeland Boff, 1964Google Scholar
  402. 31.
    Segalet al., 1967Google Scholar
  403. 32.
    Taylorand Laverty, 1972Google Scholar
  404. 33.
    Vasquezand Isquierdo, 1970Google Scholar
  405. 34.
    Weissman, 1961Google Scholar
  406. 35.
    Weissmanand Koe, 1965Google Scholar
  407. 36.
    Weissmanet al., 1966Google Scholar
  408. 1.
    Abdallah, 1971Google Scholar
  409. 2.
    Abdallahet al., 1974Google Scholar
  410. 3.
    Baez, 1974Google Scholar
  411. 4.
    Borellaet al., 1969 bGoogle Scholar
  412. 5.
    Clineschmidtet al., 1974Google Scholar
  413. 6.
    Fibiger, 1973Google Scholar
  414. 7.
    Freyand Schulz, 1973Google Scholar
  415. 8.
    Funderburket al., 1971Google Scholar
  416. 9.
    Gluckmanand Baum, 1969Google Scholar
  417. 10.
    Holtzman, 1974Google Scholar
  418. 11.
    Holtzmanand Jewett, 1971Google Scholar
  419. 12.
    Hulmeet al., 1974Google Scholar
  420. 13.
    Jespersenand Scheel-Krüger, 1973Google Scholar
  421. 14.
    Kruk, 1973Google Scholar
  422. 15.
    Luetal., 1973Google Scholar
  423. 16.
    Lewander, 1971dGoogle Scholar
  424. 17.
    Maickelet al., 1970Google Scholar
  425. 18.
    Mantegazzaet al., 1970Google Scholar
  426. 19.
    Mantegazzaet al., 1968aGoogle Scholar
  427. 20.
    Menonet al., 1970Google Scholar
  428. 21.
    Neilland Grossman, 1971Google Scholar
  429. 22.
    Samaninet al., 1972Google Scholar
  430. 23.
    Schmitt, 1973Google Scholar
  431. 24.
    Singeret al., 1971Google Scholar
  432. 25.
    Spengler, 1962Google Scholar
  433. 26.
    Weissman, et al., 1966Google Scholar
  434. 27.
    Yelnoskyand Lawlor, 1970Google Scholar
  435. 1.
    Allanet al., 1969Google Scholar
  436. 2.
    Berryet al., 1971Google Scholar
  437. 3.
    Bhagatand Shideman, 1963Google Scholar
  438. 4.
    Bonaccorsi, 1968Google Scholar
  439. 5.
    Burnand Rand, 1958Google Scholar
  440. 6.
    Cession-Fossion, 1963aGoogle Scholar
  441. 7.
    Commaratoand Lum, 1970Google Scholar
  442. 8.
    Dayand Rand, 1962Google Scholar
  443. 9.
    Detricket al., 1937Google Scholar
  444. 10.
    Gokhaleet al., 1966Google Scholar
  445. 11.
    Harrisonet al., 1963Google Scholar
  446. 12.
    Harveyet al., 1968Google Scholar
  447. 13.
    Huangand Ho, 1973Google Scholar
  448. 14.
    Maxwellet al., 1959Google Scholar
  449. 15.
    Maxwellet al., 1960Google Scholar
  450. 17.
    Nielsenand Frey, 1969aGoogle Scholar
  451. 17.
    Nielsenand Frey, 1969bGoogle Scholar
  452. 18.
    Randand Trinker, 1968Google Scholar
  453. 19.
    Reinert, 1958Google Scholar
  454. 20.
    Rudzikand Eble, 1960Google Scholar
  455. 21.
    Rudzikand Eble, 1967Google Scholar
  456. 22.
    Schmittand Schmitt, 1957Google Scholar
  457. 23.
    Schmittand Schmitt, 1959Google Scholar
  458. 24.
    Schmittand Schmitt, 1960Google Scholar
  459. 25.
    Schmittand Schmitt, 1961aGoogle Scholar
  460. 26.
    Schmittand Schmitt, 1961bGoogle Scholar
  461. 27.
    Schmittet al., 1962Google Scholar
  462. 28.
    Schmittand Schmitt, 1964Google Scholar
  463. 29.
    Schmittand Schmitt, 1970Google Scholar
  464. 30.
    Stoneet al., 1962Google Scholar
  465. 31.
    Trendelenburget al., 1962aGoogle Scholar
  466. 32.
    Valdecasaset al., 1958Google Scholar
  467. 33.
    Viziet al., 1968Google Scholar
  468. 34.
    Yelnoskyet al., 1966bGoogle Scholar
  469. 1.
    Askew, 1962Google Scholar
  470. 2.
    Beauvalletet al., 1966aGoogle Scholar
  471. 3.
    Belenkyand Vitolina, 1962Google Scholar
  472. 4.
    Beuthinet al., 1972Google Scholar
  473. 5.
    Bizziet al., 1970Google Scholar
  474. 6.
    Blackhamand Spencer, 1969Google Scholar
  475. 7.
    Borbélyet al., 1974Google Scholar
  476. 8.
    Borellaet al., 1969aGoogle Scholar
  477. 9.
    Brittainet al., 1964Google Scholar
  478. 10.
    Brodieet al., 1969Google Scholar
  479. 11.
    Brodieet al., 1970Google Scholar
  480. 12.
    Cahnand Herold, 1970Google Scholar
  481. 13.
    Caldwelland Sever, 1974Google Scholar
  482. 14.
    Caldwellet al., 1974Google Scholar
  483. 15.
    Cheymoland Levassort, 1957Google Scholar
  484. 16.
    Coperet al., 1971Google Scholar
  485. 17.
    Craigmillet al., 1974Google Scholar
  486. 18.
    Dolfiniet al., 1969aGoogle Scholar
  487. 19.
    Feldbergand Lang, 1970Google Scholar
  488. 20.
    Gessaet al., 1969Google Scholar
  489. 21.
    Haas, 1939Google Scholar
  490. 22.
    Hilland Horita, 1970Google Scholar
  491. 23.
    Hilland Horita, 1971Google Scholar
  492. 24.
    Holtzman, 1974Google Scholar
  493. 25.
    Jespersenand Bonaccorsi, 1969bGoogle Scholar
  494. 26.
    Jonssonand Gunne, 1972Google Scholar
  495. 27.
    Joriand Garattini, 1965Google Scholar
  496. 28.
    Joriand Garattini, 1973Google Scholar
  497. 29.
    Klissiunisand Dosi, 1959Google Scholar
  498. 30.
    Koppanyiand Maling, 1972Google Scholar
  499. 31.
    Kruk, 1972Google Scholar
  500. 32.
    Ladefoged, 1973Google Scholar
  501. 33.
    Ladefoged, 1974Google Scholar
  502. 34.
    Lapinet al., 1972Google Scholar
  503. 35.
    Lewander, 1969Google Scholar
  504. 36.
    Lewander, 1971dGoogle Scholar
  505. 37.
    Malinget al., 1972Google Scholar
  506. 38.
    Malingand Koppanyi, 1972Google Scholar
  507. 39.
    Mantegassaet al., 1968bGoogle Scholar
  508. 40.
    Mantegazzaet al., 1970Google Scholar
  509. 41.
    Matsumotoand Griffin, 1971Google Scholar
  510. 42.
    Matsumotoand Shaw, 1971bGoogle Scholar
  511. 43.
    Menonand Dandiya, 1967Google Scholar
  512. 44.
    Menonet al., 1967Google Scholar
  513. 45.
    Morpurgoand Theobald, 1964Google Scholar
  514. 46.
    Morpurgoand Theobald, 1965Google Scholar
  515. 47.
    Morpurgoand Theobald, 1967Google Scholar
  516. 48.
    Nakajmaet al., 1964Google Scholar
  517. 49.
    Przegalinskiand Kleinrok, 1970Google Scholar
  518. 50.
    Reid, 1970bGoogle Scholar
  519. 51.
    Rossand Renyi, 1967bGoogle Scholar
  520. 52.
    Severet al., 1974Google Scholar
  521. 53.
    Spencer, 1965Google Scholar
  522. 54.
    Tedeschiet al., 1959Google Scholar
  523. 55.
    Terwelpet al., 1973Google Scholar
  524. 56.
    Thuillieret al., 1962Google Scholar
  525. 57.
    Valzelliet al., 1968Google Scholar
  526. 58.
    Valzelliet al., 1967bGoogle Scholar
  527. 59.
    Weis, 1973Google Scholar
  528. 60.
    Wolfand Bunce, 1973Google Scholar
  529. 61.
    Yehudaand Wurtman, 1972aGoogle Scholar
  530. 62.
    Zetler, 1970Google Scholar
  531. 63.
    Zetlerand Moog, 1958Google Scholar
  532. 1.
    Coper et al., 1971Google Scholar
  533. 2.
    Yehudaand Wurtman, 1972aGoogle Scholar
  534. 3.
    Yehudaand Wurtman, 1972bGoogle Scholar
  535. 4.
    Yehudaand Wurtman, 1973Google Scholar
  536. 5.
    Terwelpet al., 1973Google Scholar
  537. 1.
    Alhava, 1973Google Scholar
  538. 2.
    Askew, 1962Google Scholar
  539. 3.
    Banarjeeand Geh, 1973Google Scholar
  540. 4.
    Banarjeeand Lin, 1973Google Scholar
  541. 5.
    Barnettand Peschel, 1968Google Scholar
  542. 6.
    Beauvalletet al., 1966 aGoogle Scholar
  543. 7.
    Blackhamand Spencer, 1969Google Scholar
  544. 8.
    Boissieret al., 1963Google Scholar
  545. 9.
    Brittainet al., 1964Google Scholar
  546. 10.
    Brownleeand Williams, 1963aGoogle Scholar
  547. 11.
    Brownleeand Williams, 1963bGoogle Scholar
  548. 12.
    Burnand Hobbs, 1958Google Scholar
  549. 13.
    Clarket al., 1967Google Scholar
  550. 14.
    Cohenand Lal, 1963Google Scholar
  551. 15.
    Craigmillet al., 1974Google Scholar
  552. 16.
    Daviset al., 1974Google Scholar
  553. 17.
    Drudi-Baraccoet al., 1963Google Scholar
  554. 18.
    Frommeland Chmouliovsky, 1964Google Scholar
  555. 19.
    Fullerand Hines, 1967Google Scholar
  556. 20.
    Gardockiet al., 1966bGoogle Scholar
  557. 21.
    Goldbergand Salama, 1969Google Scholar
  558. 22.
    Halpernet al., 1962aGoogle Scholar
  559. 23.
    Halpern, et al., 1962bGoogle Scholar
  560. 24.
    L’Huillieret al., 1963Google Scholar
  561. 25.
    Jespersenand Bonaccorsi, 1969bGoogle Scholar
  562. 26.
    Kubena and Barry, 1970Google Scholar
  563. 27.
    Lalet al., 1963Google Scholar
  564. 28.
    Lapinet al., 1972Google Scholar
  565. 29.
    Lapinand Schelkunov, 1965Google Scholar
  566. 30.
    Lasagnaand McCann, 1957Google Scholar
  567. 31.
    Leslieand Maxwell, 1964Google Scholar
  568. 32.
    Mantegazzaet al., 1970Google Scholar
  569. 33.
    Mantegazzaet al., 1968aGoogle Scholar
  570. 34.
    Maxwell, 1959Google Scholar
  571. 35.
    Mennear, 1965Google Scholar
  572. 36.
    Mennearand Rudzik, 1965Google Scholar
  573. 37.
    Mennearand Rudzik, 1966Google Scholar
  574. 38.
    Mennearand Rudzik, 1968Google Scholar
  575. 39.
    Menonet al., 1973Google Scholar
  576. 40.
    Menonand Dandiya, 1967Google Scholar
  577. 41.
    Moore, 1964Google Scholar
  578. 42.
    Moore, 1965Google Scholar
  579. 43.
    Mooreet al., 1965Google Scholar
  580. 44.
    Morpurgoand Theobald, 1964Google Scholar
  581. 45.
    Müllerand Schoetensack, 1969Google Scholar
  582. 46.
    O’Deaand Rand, 1969Google Scholar
  583. 47.
    Pecznikand Zei, 1961Google Scholar
  584. 48.
    Pfeifferet al., 1966Google Scholar
  585. 49.
    Prabhu, 1972Google Scholar
  586. 50.
    Proctoret al., 1973Google Scholar
  587. 51.
    Proctoret al., 1966Google Scholar
  588. 52.
    Proctoret al., 1964Google Scholar
  589. 53.
    Przegalinskiand Kleinrok, 1970Google Scholar
  590. 54.
    Raevskiiand Gura, 1970Google Scholar
  591. 55.
    Rudzikand Mennear, 1966Google Scholar
  592. 56.
    Sokoland Maickel, 1972Google Scholar
  593. 57.
    Stolkand Rech, 1968aGoogle Scholar
  594. 58.
    Stolkand Rech, 1968bGoogle Scholar
  595. 59.
    Ticeand Spooner, 1970Google Scholar
  596. 60.
    Vedernikov, 1970Google Scholar
  597. 61.
    Weiset al., 1961Google Scholar
  598. 62.
    Wolfand Bunce, 1973Google Scholar
  599. 63.
    Delphaut, 1965Google Scholar
  600. Abdallah, A.H.: On the role of norepinephrine in the anorectic effect of d-amphetamine in mice. Arch. int. Pharmacodyn. 192, 72–76 (1971)PubMedGoogle Scholar
  601. Abdallah, A.H.: Comparative study of the anorexigenic activity of 5-(3, 4-dichlorophen-oxymethyl)-2-amino-2-oxazoline HCl and d-amphetamine in different species. Toxicol. appl. Pharmacol. 25, 344–353 (1973)PubMedGoogle Scholar
  602. Abdallah, A.H.: Effect of APMO on pulmonary and arterial blood pressure: a comparison with aminorex. Europ. J. Pharmacol. 27, 249–251 (1974)Google Scholar
  603. Abdallah, A. H., White, H.D.: Comparative study of the anorectic activity of phenindamine, d-amphetamine and fenfluramine in different species. Arch. int. Pharmacodyn. 188, 271–283 (1970)PubMedGoogle Scholar
  604. Abdallah, A.H., White, H.D., Kulkarni, A.S.: Interaction of d-amphetamine with central nervous system depressants on food intake and spontaneous motor activity. Europ. J. Pharmacol. 26, 119–121(1974)Google Scholar
  605. Absava, G.I., Vysotskaya, N.B.: Psychostimulators effect on the locomotor activity of rats, and also upon intra- and extracellular content of potassium and sodium ions in different sections of the brain. Farmakol. i Toksikol. 33, 137 (1970)Google Scholar
  606. Accornero, F.: Intossicazione sperimentale da betafenilisopropilamina. Lav. neuropsichiat. 1, 308–327(1947)Google Scholar
  607. Adler, M.W.: Changes in sensitivity to amphetamine in rats with chronic brain lesions. J. Pharmacol. exp. Ther. 134, 214–221 (1961)PubMedGoogle Scholar
  608. Aghajanian, G.K., Bunney, S.: Central dopaminergic neurons: neurophysiological identification and responses to drugs. Frontiers in catecholamine research, pp. 643–648. Usdin, E., Snyder, S. (Eds.). New York: Pergamon Press 1973Google Scholar
  609. Ahlskog, J. E., Hoebel, B.G.: Overeating and obesity from damage to noradrenergic system in the brain. Science 182, 166–169 (1973)PubMedGoogle Scholar
  610. Ahmed, S.S., Abraham, G.J.S., Ansari, M.Y.: Dose-dependent modification of codeine analgesia by d-amphetamine in albino rats. Arch. int. Pharmacodyn. 184, 240–246 (1970)PubMedGoogle Scholar
  611. Alexander, M., Isaac, W.: Effect of illumination and d-amphetamine on the activity of the rhesus macaque. Psychol. Rep. 16, 311–313 (1965)PubMedGoogle Scholar
  612. Alhava, E.: Amphetamine toxicity in adult and developing mice. Acta pharmacol. (Kbh.) 31, 387–400 (1972)Google Scholar
  613. Alhava, E.: Modification by methyltyrosine methylester (H 44/68) of the amphetamine-induced toxicity and brain catecholamine changes in developing mice. Acta pharmacol. (Kbh.) 32, 119–128 (1973)Google Scholar
  614. Alhava, E., Klinge, E.: Age and brain catecholamine content as factors influencing amphetamine toxicity in mice. Acta pharmacol. (Kbh.) 31, 401–411 (1972)Google Scholar
  615. Alhava, E., Mattila, M. J.: Amphetamine toxicity and brain amphetamine concentrations in adult and developing mice. Brit. J. Pharmacol. 44, 352–353 (1972)Google Scholar
  616. Alhava, E., Mattila, M. J.: Dose-dependent differences of amphetamine levels in brain and heart of adult and developing mice. Acta pharmacol. (Kbh.) 34, 211–221 (1974)Google Scholar
  617. Allan, D., Baird, J.R.C., Ellis, K.E.J.: Interaction between (±)-amphetamine and atropine on the rat cardiovascular system. Brit. J. Pharmacol. 37, 367–370 (1969)Google Scholar
  618. Alles, G.A.: The comparative physiological actions of dl-phenylisopropylamines I. Pressor effect and toxicity. J. Pharmacol. exp. Ther. 47, 339–354 (1933)Google Scholar
  619. Alles, G.A.: Comparative physiological actions of the optically isomeric phenisopropylamines. Univ. Calif. Publ. Pharmacol. 1:11, 129–150 (1939)Google Scholar
  620. Alpern, E.B., Finkelstein, N., Gantt, W.H.: Effect of amphetamine sulfate on the nervous activity of dogs. Amer. J. Physiol. 133, 196 (1941)Google Scholar
  621. Alphin, R.S., Ward, J.W.: Anorexigenic effects of fenfluramine hydrochloride in rats, guinea pigs and dogs. Toxicol. appl. Pharmacol. 14, 182–191 (1969)PubMedGoogle Scholar
  622. Andén, N.-E.: Effects of amphetamine and some other drugs on central catecholamine mechanisms. In: Costa, E., Garattini, S. (Eds.): International symposium on amphetamines and related compounds, pp.447–462. New York: Raven Press 1970Google Scholar
  623. Andén, N.-E., Carlsson, A., Haggendal, J.: Adrenergic mechanisms. Ann. Rev. Pharmacol. 9, 119–134(1969)PubMedGoogle Scholar
  624. Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Functional role of the nigro-neostriatal dopamine neurons. Acta pharmacol. (Kbh.) 24, 263–274 (1966)Google Scholar
  625. Andén, N.-E., Henning, M., Obianwu, H.: Effect of epsilonaminocaproic acid on adrenergic nerve function and tissue monoamine levels. Acta pharmacol (Kbh.) 26, 113–129 (1968)Google Scholar
  626. Andén, N.-E., Magnusson, T., Stock, G.: Effects of drugs influencing monoamine mechanisms on the increase in brain dopamine produced by axotomy or treatment with gammahydroxybutyric acid. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 178, 363–372 (1973)Google Scholar
  627. Andén, N.-E., Rubenson, A., Fuxe, K., Hökfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967)PubMedGoogle Scholar
  628. Andén, N.-E., Svensson, T.H.: Release of dopamine from central noradrenaline nerves after treatment with reserpine plus amphetamine. J. neural Transm. 34, 23–30 (1973)PubMedGoogle Scholar
  629. Andersson, B., Larsson, S.: Water and food intake and the inhibitory effect of amphetamine on drinking and eating before and after “Prefrontal lobotomy” in dogs. Acta physiol. scand. 38, 22–30 (1956)PubMedGoogle Scholar
  630. Andres, F., Ohnesorge, F. K., DeVries, R.: Zum Mechanismus der stoffwechselstimulierenden Wirkung von Weckaminen an isolierten Organen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 257, 261–262 (1967)Google Scholar
  631. Angel, C., Muphree, O.D., DeLuca, D.C.: The effects of chlordiazepoxide, amphetamine and cocaine on bar-press behaviour in normal and genetically nervous dogs. Dis. nerv. Syst. 35, 220–231 (1974)PubMedGoogle Scholar
  632. Angelis, L. de, Soranzio, M.R., Traversa, U., Vertua, R.: 5-Hydroxytryptamine-C14 and dexamphetamine-C14 uptake by fundal sarcolemma preparations and the problem of the common receptor. Arch. int. Pharmacodyn. 210, 99–107 (1974)PubMedGoogle Scholar
  633. Anichkov, S.V., Borodkin, Y.S., Zaitsev, Y.V.: Direct action of amphetamine and its furane derivatives on the excitability of neuron populations in various cerebral structures. Neuropharmacology 12, 803–812 (1973)PubMedGoogle Scholar
  634. Anisman, H., Kokkinidis, L.: Effects of central and peripheral adrenergic and cholinergic modification on time-dependent processes in avoidance performance. Behav. Biol. 10, 161–171 (1974)PubMedGoogle Scholar
  635. Antonaccio, M.J., Smith, C.B.: Effects of chronic pretreatment with pargyline upon responses of the atrial pacemaker and of left atrial strips of guinea pigs to tyramine, mephentermine, d-amphetamine and adrenergic nerve stimulation. J. Pharmacol. exp. Ther. 170, 97–107 (1969)PubMedGoogle Scholar
  636. Appel, J. B., Freedman, D.X.: Tolerance and cross-tolerance among psychotomimetic drugs. Psychopharmacologia (Berl.) 13, 267–274 (1968)Google Scholar
  637. Armitage, P., Rushton, R., Steinberg, H.: Interactions of chlordiazepoxide and dexamphetamine in rats. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 259, 150–151 (1968)Google Scholar
  638. Arnfred, T., Randrup, A.: Cholinergic mechanism in brain inhibiting amphetamine-induced stereotyped behaviour. Acta pharmacol. (Kbh.) 26, 384–394 (1968)Google Scholar
  639. Arnold, L.E., Kirilcuk, V., Corson, S.A., Corson, E.O.: Levoamphetamine and dextroamphetamine: differential effect on aggression and hyperkinesis in children and dogs, Amer. J. Psychiat. 130, 165 (1973)PubMedGoogle Scholar
  640. Asano, Y., Moroji, T.: Effects of methamphetamine on daily rhythms of hypothalamic norepinephrine, serotonin and plasma corticosterone levels in the rat. Life Sci. 14, 1463–1472 (1974)PubMedGoogle Scholar
  641. Asher, B.M., Aghajanian, G.K.: 6-Hydroxydopamine lesions of olfactory tubercles and caudate nuclei: effect on amphetamine-induced stereotyped behaviour in rats. Brain. Res. 82, 1–12 (1974)PubMedGoogle Scholar
  642. Askew, B.M.: Hyperpyrexia as a contributory factor in the toxicity of amphetamine to aggregated mice. Brit. J. Pharmacol. 19, 245–257 (1962)PubMedGoogle Scholar
  643. Aström, A.: Antisympathetic action of sympathomimetic amines. Acta physiol. scand. 18, 295–307 (1949)Google Scholar
  644. Atrens, D.M., Vietinghoff-Riesch, F. von, Karabetian, A. der, Masliya, E.: Modulation of reward and aversion processes in the rat diencephalon by amphetamine. Amer. J. Physiol. 226, 874–880 (1974)PubMedGoogle Scholar
  645. Axelrod, J.: Metabolism of epinephrine and other sympathomimetic amines. Physiol. Rev. 39, 751–776 (1959)PubMedGoogle Scholar
  646. Axelrod, J.: The metabolism, storage and release of catecholamines. In: Recent progress in hormone research, pp. 597–622. New York: Academic Press 1965Google Scholar
  647. Axelrod, J.: Amphetamine: metabolism, physiological disposition and its effects on catecholamine storage. In: Costa, E., Garattini, S. (Eds.): International Symposium on Amphetamine and Related Compounds, pp.207–216. New York: Raven Press 1970Google Scholar
  648. Axelrod, J., Hertting, G., Potter, L.: Effects of drugs on the uptake and release of 3-H-norepinephrine in the rat heart. Nature (Lond.) 194, 297 (1962)Google Scholar
  649. Axelrod, J., Inscoe, J.K.: The uptake and binding of circulating serotonin and the effect of drugs. J. Pharmacol. exp. Ther. 141, 161–165 (1963)PubMedGoogle Scholar
  650. Axelrod, J., Tomchick, R.: Increased rate of metabolism of epinephrine and norepinephrine by sympathomimetic amines. J. Pharmacol. exp. Ther. 130, 367–369 (1960)PubMedGoogle Scholar
  651. Axelrod, J., Whitby, L.G., Hertting, G.: Effect of psychotropic drugs on the uptake of 3H-norepinephrine by tissues. Science 133, 383–385 (1961)PubMedGoogle Scholar
  652. Ayhan, I.H., Randrup, A.: Inhibitory effects of amphetamine, l-DOPA and apomorphine on morphine-induced behavioural excitation or rats. Arch. int. Pharmacodyn. 204, 283–292 (1973)PubMedGoogle Scholar
  653. Azzaro, A.J., Rutledge, C.O.: Selectivity of release of norepinephrine, dopamine and 5-hydroxy-tryptamine by amphetamine in various regions of rat brain. Biochem. Pharmacol. 22, 2801–2813 (1973)PubMedGoogle Scholar
  654. Azzaro, A.J., Ziance, R.J., Rutledge, C.O.: The importance of neuronal uptake of amines for amphetamine-induced release of 3H-norepinephrine from isolated brain tissue. J. Pharmacol. exp. Ther. 189, 110–118 (1974)PubMedGoogle Scholar
  655. Babbini, M., Montanaro, N., Strocchi, P., Gaiardi, M.: Enhancement of amphetamine-induced stereotyped behavior by benzodiazepines. Europ. J. Pharmacol. 13, 330–340 (1971)Google Scholar
  656. Babulova, A., Cotillo, P., Bonaccorsi, A., Podvalova, I.: Effects of fenfluramine on the adrenergic system. J. Pharm. Pharmacol. 24, 886–893 (1972)PubMedGoogle Scholar
  657. Bäckström, M., Wetterberg, L.: Increased N-acetylserotonin and melatonin formation induced by d-amphetamine in rat pineal gland organ culture via a β-adrenergic receptor mechanism. Acta physiol. scand. 87, 113–120 (1973)PubMedGoogle Scholar
  658. Baez, L.A.: Role of catecholamines in the anorectic effects of amphetamine in rats. Psychopharmacologia (Berl.) 35, 91–98 (1974)Google Scholar
  659. Bagchi, S.P., McGeer, P.L.: Some properties of tyrosine hydroxylase from the caudate nucleus. Life Sci. 3, 1195–1200 (1964)PubMedGoogle Scholar
  660. Bainbridge, J.G.: The inhibitory effect of amphetamine on exploration in mice. Psychopharmacologia (Berl.) 18, 314–319 (1970)Google Scholar
  661. Baird, J.R.C.: The effects of (+)-amphetamine and (±)-phenmetrazine on the noradrenaline and dopamine levels in the hypothalamus and corpus striatum of the rat. J. Pharm. Pharmacol. 20, 234–235 (1968)PubMedGoogle Scholar
  662. Baird, J.R.C., Lewis, J.J.: Effects of drugs on noradrenaline and 3-hydroxytyramine (dopamine) levels and on the noradrenaline to dopamine ratio in the rat brain. Biochem. Pharmacol. 12, 577–602 (1963)Google Scholar
  663. Baird, J.R.C., Lewis, J.J.: The effects of cocaine, amphetamine and some amphetamine-like compounds on the in vivo levels of noradrenaline and dopamine in the rat brain. Biochem. Pharmacol. 13, 1475–1482 (1964)Google Scholar
  664. Baldessarini, R.J.: Release of aromatic amines from brain tissues of the rat in vitro. J. Neurochem. 18, 2509–2518 (1971)PubMedGoogle Scholar
  665. Baldessarini, R.J., Vogt, M.: The uptake and subcellular distribution of aromatic amines in the brain of the rat. J. Neurochem. 18, 2519–2533 (1971)PubMedGoogle Scholar
  666. Balster, R.L., Schuster, C.R.: A comparison of d-amphetamine, l-amphetamine, and methamphetamine self-administration in rhesus monkeys. Pharmacol. Biochem. Behav. 1, 67–71 (1973)PubMedGoogle Scholar
  667. Banerjee, U., Geh, S.L.: Time-related interaction patterns of amphetamine with reserpine and other central depressants. Res. Commun. chem. Path. Pharmacol. 6, 109–122 (1973)Google Scholar
  668. Banarjee, U., Lin, G. S.: On the mechanism of central action of amphetamine—the role of catecholamines. Neuropharmacology 12, 917–931 (1973)Google Scholar
  669. Barnes, C.D.: The interaction of amphetamine and eserine on the EEG. Life Sci. 5, 1897–1902 (1966)PubMedGoogle Scholar
  670. Barnes, C.D., Meyers, F.H.: Eserine and amphetamine: Interactive effects on sleeping time in mice. Science 144, 1221–1222 (1964)PubMedGoogle Scholar
  671. Barnett, A., Peschel, E.: Potentiation of methamphetamine aggregate toxicity in mice by diethyl-dithiocarbamate. J. Pharm. Pharmacol. 20, 482–483 (1968)PubMedGoogle Scholar
  672. Barrett, R.J., Leith, N.J., Ray, O.S.: Permanent facilitation of avoidance behavior by d-amphetamine and scopolamine. Psychopharmacologia (Berl.) 25, 321–331 (1972)Google Scholar
  673. Barrett, R.J., Leith, N.J., Ray, O.S.: An analysis of the facilitation of avoidance acquisition produced by d-amphetamine and scopolamine. Behav. Biol. 11, 189–203 (1974)PubMedGoogle Scholar
  674. Barrett, R.J., Steranka, L.R.: An analysis of i-amphetamine produced facilitation of avoidance acquisition in rats and performance changes subsequent to drug termination. Life Sci. 14, 163–180 (1974)PubMedGoogle Scholar
  675. Barry, H., Buckley, J.P.: Drug effects on animal performance and the stess syndrome. J. pharm. Sci. 55, 1159–1183 (1966)PubMedGoogle Scholar
  676. Barry, H., Miller, N.E.: Effects of drugs on approach avoidance conflict tested repeatedly by means of a “telescope alley.” J. comp. physiol. Psychol. 55, 201–210 (1962)PubMedGoogle Scholar
  677. Barry, H., Wagner, S., Miller, N.E.: Effects of several drugs on performance in an approach avoidance conflict. Psychol. Rep. 12, 215–221 (1963)Google Scholar
  678. Bartolini, A., Pepeu, G.: Effect of adrenergic blockade on spontaneous and stimulated acetylcholine output from the cerebral cortex of the cat. Pharmacol. Res. Commun. 2, 23–29 (1970)Google Scholar
  679. Basso, P. del, Rusca, G., Carpi, A.: Drug-induced changes of urinary catecholamines in the rat: role of the adrenal medulla. Europ. J. Pharmacol. 13, 83–89 (1970)Google Scholar
  680. Bättig, K.: Die Wirkung von Training und Amphetamin auf Ausdauer und Geschwindigkeit der Schwimmleistung der Ratte. Psychopharmacologia (Berl.) 4, 15–27 (1963a)Google Scholar
  681. Bättig, K.: Schwimmleistung, Laufleistung, Fluchtreaktionen, Neugierde und Appetitverhalten der Ratte unter der Wirkung von Amphetamin. Pharm. Acta Helv. 39, 427–440 (1963b)Google Scholar
  682. Bauer, I., Pickenhain, L.: Untersuchungen zur Gewöhnung an Weckamine mit der Methode der bedingten Fluchtreflexe bei der Ratte. Psychopharmacologia (Berl.) 12, 78–82 (1967)Google Scholar
  683. Bauer, R.H., Duncan, N.C.: Twenty-four-hour proactive facilitation of avoidance and discrimination learning in rats by d-amphetamine. J. comp. physiol. Psychol. 77, 521–527 (1971)PubMedGoogle Scholar
  684. Bauer, W.S., Perley, J.E.: Diurnal variation of hepatic amphetamine concentrations in mice fed freely and fed single daily meals. J. Pharm. Pharmacol. 23, 976–977 (1971)PubMedGoogle Scholar
  685. Baum, E., North-Diehl, A., Piarroux, M.-C., Thenint, F., Boissier, J.-R.: Modifications biochimiques, histochimiques et pharmacologiques après lésion bilatérale des différentes parties de la substance noire chez le rat. J. Pharmacol (Paris) 3, 477–486 (1972)Google Scholar
  686. Beani, L., Bianchi, C., Santinoceto, L., Marchetti, P.: The cerebral acetylcholine release in conscious rabbits with semi-permanently implanted epidural cups. Int. J. Neuropharmacol. 7, 469–481 (1968)PubMedGoogle Scholar
  687. Beaton, J.M., Bradley, R.J.: The behavioral effects of some hallucinogenic derivatives of amphetamine. In: Ellinwood, E.H., Cohen, S. (Eds.): Current concepts on amphetamine abuse, pp.49–57. DHEW Publ. No. (HEW) 72–9085. U.S. Government Printing Office, Washington, D.C. 1972Google Scholar
  688. Beaton, J.M., LeBlanc, A.E., Webster, C.D.: The effects of d-amphetamine on the interresponse times of rats and guinea pigs on a modified Sidman discriminated avoidance schedule. Psychopharmacologia (Berl.) 37, 199–203 (1974)Google Scholar
  689. Beauvallet, M.: L’amphétamine et les monoamines du système nerveux central. Actualités Pharmacol. 21, 15–39 (1968)PubMedGoogle Scholar
  690. Beauvallet, M., Fugazza, J., Godefroy, F., Solier, M.: Hyperactivité provoquée par l’amphetamine chez la souris groupées. II. Etude comparée des teneur en noradrenaline et 3, 4-dihydroxytyramine (dopamine) du tissue cérébral. J. Physiol. (Paris) 56, 532–533 (1964)Google Scholar
  691. Beauvallet, M., Fugazza, J., Godefroy, F., Solier, M.: Hyperactivité provoquée par l’amphétamine chez les souris en exercice forcé et teneur en noradrenaline et 3, [3, 4-]4-hydroxytyramine (dopamine) du cerveau et du coeur. J. Physiol. (Paris) 57, 551–552 (1965)Google Scholar
  692. Beauvallet, M., Fugazza, J., Godefroy, F., Solier, M.: Hyperactivité provoquée par l’amphétamine chez les souris réserpinées en exercice forcé et teneur en catécholamines du cerveau et des surrénal. J. Physiol. (Paris) 58, 460–461 (1966a)Google Scholar
  693. Beauvallet, M., Fugazza, J., Legrand, M.: Excrétion urinaire de l’adrénaline, de la noradrénaline et de la dopamine au cours des 24 heures qui suivent l’administration d’amphétamine. C.R. Soc. Biol. (Paris) 160, 546–550 (1966b)Google Scholar
  694. Beauvallet, M., Fugazza, J., Legrand, M.: Action de l’amphétamine sur les teneurs en noradrénaline et 5-hydroxytryptamine du cerveau de rats maintenus 4 heures à 33° C Thérapie 22, 1273–1276 (1967)PubMedGoogle Scholar
  695. Beauvallet, M., Fugazza, J., Solier, M.: Variations de la teneur en adrénaline et noradrénaline des surrénales et du cerveau avant et après travail musculaire. Action de l’amphétamine. C.R. Soc. Biol. (Paris) 156, 1258–1260 (1962a)Google Scholar
  696. Beauvallet, M., Fugazza, J., Solier, M.: Hyperexcitabilité provoquée par l-amphétamine chez les souris groupées et teneur en noradrénaline et adrénaline des tissus. C.R. Acad. Sci. (Paris) 257, 3251–3253 (1963)Google Scholar
  697. Beauvallet, M., Halpern, B.N., Fugazza, J., Drudi-Baracco, C.: Corrélation entre l’hyperexcitabilité provoquée par l’amphétamine chez les souris groupées et la teneur du cerveau en noradrénaline. Biochem. Pharmacol. 12, Suppl.8 (1962b)Google Scholar
  698. Beauvallet, M., Legrand, M., Bernard, J., Solier, M.: Actions de l’amphétamine sur la teneur en 5-hydroxytryptamine du cerveau de rat. C.R. Soc. Biol. (Paris) 163, 855–856 (1969)Google Scholar
  699. Beauvallet, M., Legrand, M., Solier, M.: Actions de l’amphétamine sur la teneur en 5-hydroxytryptamine des différentes aires du cerveau de rat. C.R. Soc. Biol. (Paris) 164, 1462–1467 (1970)Google Scholar
  700. Beauvallet, M., Solier, M.: Effect d’un exercice forcé sur la toxicité de l’amphétamine et la teneur en noradrénaline du cerveau. C.R. Soc. Biol. (Paris) 158, 2306–2309 (1964)Google Scholar
  701. Beckwith, B.E., Sandman, C.A., Alexander, W.D.: d-Amphetamine effects on attention and memory in the albino and hooded rat. Pharmacol. Biochem. Behav. 2, 557–561 (1974)PubMedGoogle Scholar
  702. Bejrablaya, D., Burn, J.H., Walter, J.M.: The action of sympathomimetic amines on heart rate in relation to the effect of reserpine. Brit. J. Pharmacol. 13, 461–466 (1958)PubMedGoogle Scholar
  703. Belenky, M.L., Vitolina, M.: The pharmacological analysis of the hyperthermia caused by phenamine (amphetamine). Int. J. Neuropharmacol. 1, 1–7 (1962)Google Scholar
  704. Bell, D.S., Kirkby, R.J., Preson, A.C.: Tolerance to the hyperactivating effect of methylamphetamine. Psychopharmacologia (Berl.) 36, 41–47 (1974)Google Scholar
  705. Belleville, R.E.: Control of behavior by drug-produced internal stimuli. Psychopharmacologia (Berl.) 5, 95–105 (1964)Google Scholar
  706. Belozertsev, Y.A.: Effect of psychostimulants on the avoidance reaction to stimulation of the caudate nucleus. Bull. exp. Biol. Med. 77, 284–287 (1974)PubMedGoogle Scholar
  707. Benfey, B.G., Varma, D.R.: Inhibition of sympathomimetic effects on the heart. Brit. J. Pharmacol. 23, 399–404 (1964)PubMedGoogle Scholar
  708. Benington, F., Morin, R.D.: The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. med. Chem. 11, 896–897 (1968)PubMedGoogle Scholar
  709. Beretta, C., Locatelli, A.: Inhibitory activity of β-carbobenzyloxyaminomethyl-1, 6-dimethyl-10α-ergoline towards stimulant effects by 5-hydroxytryptamine and amphetamine on liver fluke, Fasciola hepatica in vitro. J. Pharm. Pharmacol. 20, 744–745 (1968)PubMedGoogle Scholar
  710. Berger, B.D.: Conditioning of food aversions by injections of psychoactive drugs. J. comp. physiol. Psychol. 81, 21–26 (1972)PubMedGoogle Scholar
  711. Berger, B.D., Wise, C.D., Stein, L.: Norepinephrine: Reversal of anorexia in rats with lateral hypothalamic damage. Science 172, 281–284 (1971)PubMedGoogle Scholar
  712. Berger, B.D., Wise, C.D., Stein, L.: Area postrema damage and bait shyness. J. comp. physiol. Psychol. 82, 475–479 (1973)PubMedGoogle Scholar
  713. Berger, H.J., Brown, C.C., Krantz, J.C.: Fenfluramine blockade of CNS stimulant effects of amphetamine. J. pharm. Sci. 62, 788–791 (1973)PubMedGoogle Scholar
  714. Bernier, A., Sicot, N., LeDouarec, J.C.: Action comparée de la fenfluramine et de l’amphétamine chez les rats obèses hypothalamiques. Rev. franç. Etud. clin. biol. 14, 762–772 (1969)PubMedGoogle Scholar
  715. Bernstein, B.M., Latimer, C.N.: Behavioral facilitation: the interaction of imipramine and desipramine with amphetamine, alphapipradrol, methylphenidate, and thozalinone. Psychopharmacologia (Berl.) 12, 338–345 (1968)Google Scholar
  716. Berry, M.J., Poyser, R.H., Robertson, M.I.: Inhibition by appetite suppressants of the pressor response to (+)-amphetamine in anaesthetized cats. J. Pharm. Pharmacol. 23, 140–142 (1971)PubMedGoogle Scholar
  717. Besson, M.J., Cheramy, A., Feltz, P., Glowinski, J.: Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc. nat. Acad. Sci. (Wash.) 62, 741–748 (1969a)Google Scholar
  718. Besson, M.J., Cheramy, A., Feltz, P., Glowinski, J.: Dopamine: spontaneous and drug-induced release from the caudate nucleus in the cat. Brain Res. 32, 407–424 (1971a)PubMedGoogle Scholar
  719. Besson, M.J., Cheramy, A., Gauchy, C., Musacchio, J.: Effects of some psychotropic drugs on tyrosine hydroxylase activity in different structures of the rat brain. Europ. J. Pharmacol. 22, 181–186(1973)Google Scholar
  720. Besson, M.J., Cheramy, A., Glowinski, J.: Effects of amphetamine and desmethylimipramine on amines synthesis and release in central catecholamine containing neurons. Europ. J. Pharmacol. 7, 111–114 (1969b)Google Scholar
  721. Besson, M.J., Cheramy, A., Glowinski, J.: Effects of some psychotropic drugs on dopamine synthesis in the rat striatum. J. Pharmacol. exp. Ther. 177, 196–205 (1971b)PubMedGoogle Scholar
  722. Beuthin, F.C., Miya, T.S., Blake, D.E., Bousquet, W.F.: Enhanced sensitivity to noradrenergic agonists and tolerance development to alphamethyltyrosine in the rat. J. Pharmacol. exp. Ther. 181, 446–456 (1972)PubMedGoogle Scholar
  723. Bewsher, P.D., Hillman, C.C., Ashmore, J.: Studies on the hypoglycemic effect of d-amphetamine in aggregated mice. Biochem. Pharmacol. 15, 2079–2085 (1966)PubMedGoogle Scholar
  724. Bhagat, B.: Amphetamine and stores of noradrenaline. J. Pharm. Pharmacol. 17, 191–192 (1965a)PubMedGoogle Scholar
  725. Bhagat, B.: Pressor responses to amphetamine in the spinal cat and its influence on tachyphylaxis to tyramine. J. Pharmacol. exp. Ther. 149, 206–211 (1965b)PubMedGoogle Scholar
  726. Bhagat, B., Shideman, F. E.: Mechanism on the inhibitory action of guanethidine on cardiovascular responses to tyramine and amphetamine. J. Pharmacol. exp. Ther. 140, 317–323 (1963)PubMedGoogle Scholar
  727. Bhagat, B., Wheeler, N.: Effect of amphetamine on the swimming endurance of rats. Neuropharmacology 12, 711–713 (1973)PubMedGoogle Scholar
  728. Bianchi, C., Marazzi-Uberti, E.: Acquisition and retention of a conditioned avoidance response in mice as influenced by Pemoline, by some of its derivatives and by some CNS stimulants. Psychopharmacologia (Berl.) 15, 9–18 (1969)Google Scholar
  729. Bignami, G.: Pharmacologic influences on mating behavior in the male rat. Effects of d-amphetamine, LSD-25, strychnine, nicotine and various anticholinergic agents. Psychopharmacologia (Berl.) 10, 44–58 (1966)Google Scholar
  730. Bignami, G., Gatti, G.L.: Analysis of drug effects on multiple fixed ratio 33—fixed interval 5 min in pigeons. Psychopharmacologia (Berl.) 15, 310–332 (1969)Google Scholar
  731. Biscardi, A.M., Carpi, A., Orsingher, O.A.: Urinary excretion of catecholamines in the rat after their liberation by reserpine or dexamphetamine. Brit. J. Pharmacol. 23, 529–539 (1964)PubMedGoogle Scholar
  732. Bivens, L.W., Ray, O.S.: Amphetamine, atropine, and meprobamate effects on operant behavior in the rat. Arch. int. Pharmacodyn. 172, 380–392 (1968)PubMedGoogle Scholar
  733. Bizzi, A., Bonaccorsi, A., Jespersen, S., Jori, A., Garattini, S.: Pharmacological studies on amphetamine and fenfluramine. In: Costa, E., Garattini, S. (Eds.): International Symposium on Amphetamines and Related Compounds, pp.577–595. New York: Raven Press 1970Google Scholar
  734. Bizzi, A., Garattini, S., Veneroni, E.: The action of salicylate in reducing plasma free fatty acids and its pharmacological consequences. Brit. J. Pharmacol. 25, 187–196 (1965)PubMedGoogle Scholar
  735. Blackham, A., Spencer, P.S.J.: Interactions of oestrogenic and progestational steroids with dexamphetamine and fencamfamin in mice. Brit. J. Pharmacol. 37, 508 (1969)Google Scholar
  736. Blaschko, H.: Amine oxidase and amine metabolism. Pharmacol. Rev. 4, 415–458 (1952)PubMedGoogle Scholar
  737. Blaschko, H., Richter, D., Schlossman, H.: The oxidation of adrenaline and other amines. Biochem. J. 31, 2187–2196 (1937)PubMedGoogle Scholar
  738. Blaschko, H., Strömblad, B.C.R.: The inhibition of human amine oxidase by the two isomers of amphetamine. Arzneimittel-Forsch. 10, 327 (1960)Google Scholar
  739. Blum, R.A., Blum, J.S., Chow, K.L.: Production of convulsion by administration of benzedrine following brain operations in monkeys. Arch. Neurol. Psychiat. (Chic.) 64, 685–691 (1950)Google Scholar
  740. Blundell, J.E.: Possible mechanism for the effect of anorexic agents on feeding and hoarding behaviour in rats. Psychopharmacologia (Berl.) 22, 224–229 (1971)Google Scholar
  741. Blundell, J.E., Leshem, M. B.: Dissociation of the anorexic effects of fenfluramine and amphetamine following intrahypothlamic injection. Brit. J. Pharmacol. 47, 183–188 (1973)Google Scholar
  742. Blundell, J.E., Leshem, M.B.: Central action of anorexigenic agents: effects of amphetamine and fenfluramine in rats with lateral hypothalamic lesions. Europ. J. Pharmacol. 28, 81–88 (1974)Google Scholar
  743. Boakes, R.J., Bradley, P.B., Candy, J.M.: Abolition of the response of brain stem neurones to iontophoretically applied d-amphetamine by reserpine. Nature (Lond.) 229, 496–498 (1971)Google Scholar
  744. Boakes, R. J., Bradley, P.B., Candy, J.M.: A neuronal basis for the alerting actions of (+)-amphetamine. Brit. J. Pharmacol. 45, 391–403 (1972)Google Scholar
  745. Boakes, R.J., Bradley, P. B., Candy, J.M.: Antagonism of the effects of iontophoretically applied (+)-amphetamine by chlorpromazine on single neurones. Brit. J. Pharmacol. 49, 175–176 (1973)Google Scholar
  746. Bocknik, S.E., Kulkarni, A.S.: Effects of anorectic agents on blood pressure of the dog. Arch. int. Pharmacodyn. 202, 213–218 (1973)PubMedGoogle Scholar
  747. Bohdanecky, S., Jarvik, M.E.: The effect of d-amphetamine and physostigmine upon acquisition and retrieval in a single trial learning task. Arch. int. Pharmacodyn. 170, 58–65 (1967)PubMedGoogle Scholar
  748. Boissier, J.-R., Etevenon, P., Piarroux, M.-C., Simon, P.: Effects of apomorphine and amphetamine in rats with a permanent catalepsy induced by diencephalic lesion. Res. Commun. chem. Path. Pharmacol. 2, 829–836 (1971)Google Scholar
  749. Boissier, J.-R., Simon, P., Guernet, M., Tillement, J.-P.: Variations des monoamines provoquées par la p-chlor-N-méthylamphétamine dans différentes parties du cerveau de rat. C.R. Soc. Biol. (Paris) 268, 2298–2299 (1969)Google Scholar
  750. Boissier, J.-R., Simon, P., Lwoff, J.M.: Sur une action paradoxale du chlordiazepoxide. Thérapie 18, 1247–1256 (1963)Google Scholar
  751. Bolt, A.G., Mulligan, B.M., Graham, G.: The lipolytic activity of amphetamine in the spinalized cat. Res. Commun. chem. Path. Pharmacol. 9, 182–192 (1974)Google Scholar
  752. Bonaccorsi, A.: Studies on the hypertensive response elicited by reserpine or tetrabenazine in rats treated with amphetamine-like drugs. Europ. J. Pharmacol. 3, 97–105 (1968)Google Scholar
  753. Bonhoff, G., Lewrenz, H.: Über Weckamine (Pervitin und Benzedrin). Berlin-Göttingen-Heidelberg: Springer 1954Google Scholar
  754. Booth, D.A.: Amphetamine anorexia by direct action on the adrenergic feeding system of rat hypothalamus. Nature (Lond.) 217, 869–870 (1968)Google Scholar
  755. Borbély, A.A., Baumann, I.R., Waser, P.G.: Amphetamine and thermoregulation: studies in the unrestrained and curarized rat. Naunyn-Schmiedebergs Arch. Pharmacol. 281, 327–340 (1974)PubMedGoogle Scholar
  756. Borbély, A.A., Huston, J.P., Baumann, R.: Body temperature and behavior in chronic brain lesioned rats after amphetamine, chlorpromazine and γ-butyrolactone. In: Schönbaum, E., Lomax, P. (Eds.): The pharmacology of thermoregulation, pp.447–462. Basel: Karger 1973Google Scholar
  757. Borberg, S.: Conditioning of amphetamine-induced behaviour in the albino rat. Psychopharmacologia (Bed.) 34, 191–198 (1974)Google Scholar
  758. Borella, L.E., Herr, F.: Effect of ammonium chloride on the potentiation of amphetamine by psychotropic drugs in the rat. Biochem. Pharmacol. 20, 589–595 (1971)PubMedGoogle Scholar
  759. Borella, L., Herr, F., Wojdan, A.: Prolongation of certain effects of amphetamine by chlorpromazine. Canad. J. Physiol. Pharmacol. 47, 7–13 (1969a)Google Scholar
  760. Borella, L. E., Paquette, R., Herr, F.: The effect of some CNS depressants on the hypermotility and anorexia induced by amphetamine in rats. Canad. J. Physiol. Pharmacol. 47, 841–847 (1969b)Google Scholar
  761. Bösser, T.H., Joyce, D., Summerfîeld, A.: Factors affecting the acquisition of new behaviour after administration of an amphetamine barbiturate mixture. Brit. J. Pharmacol. 38, 459–460 (1970)Google Scholar
  762. Boulu, R., Rapin, J.R., Lebas, M., Jacquot, C.: Action centrale de l’amphétamine, de l’éphédrine et de leur dérive p-hydroxyl après lésion unilatérale du faisceau nigrostriatal chez le rat. Psychopharmacologia (Berl.) 26, 54–61 (1972)Google Scholar
  763. Bovet, D., Gatti, G.L.: Pharmacology of instrumental avoidance conditioning. In: Mickelson, M.Y., Longo, V.G. (Eds.): Pharmacology of conditioning, learning and retention, pp.75–89. New York: Pergamon Press 1965Google Scholar
  764. Bovet, D., Oliverio, A.: Decrement of avoidance conditioning performance in inbred mice subjected to prolonged sessions: performance recovery after rest and amphetamine. J. Psychol. 65, 45–55 (1967)PubMedGoogle Scholar
  765. Bradley, P. B.: Synaptic transmission in the central nervous system and its relevance for drug action. Int. Rev. Neurobiol. 11, 1–56 (1968)PubMedGoogle Scholar
  766. Bradley, P. B., Elkes, J.: The effects of some drugs on the electrical activity of the brain. Brain 80, 77–117 (1957)PubMedGoogle Scholar
  767. Bradley, P. B., Key, B.J.: The effect of drugs on arousal responses produced by electrical stimulation of the reticular formation of the brain. Electroenceph. clin. Neurophysiol. 10, 97–110 (1958)PubMedGoogle Scholar
  768. Bradley, P. B., Wolstencroft, J.H.: Actions of drugs on single neurones in the brain-stem. Brit. med. Bull. 21, 15–18 (1965)PubMedGoogle Scholar
  769. Bradley, D.W.H., Joyce, D., Murphy, E.H., Nash, B.M., Porsolt, R.D., Summerfield, A., Twyman, W.A.: Amphetamine-barbiturate mixture: Effects on the behaviour of mice. Nature (Lond.)220, 187–188 (1968)Google Scholar
  770. Brady, J.V.: A comparative approach to the evaluation of drug effects upon affective behaviour. Ann. N.Y. Acad. Sci. 64, 632–643 (1956)PubMedGoogle Scholar
  771. Brady, J.V.: Animal experimental evaluation of drug effects upon behaviour. Fed. Proc. 17, 1031–1034 (1958)PubMedGoogle Scholar
  772. Branch, M.N.: Behavior as a stimulus: Joint effects of d-amphetamine and pentobarbital. J. Pharmacol. exp. Ther. 189, 33–41 (1974)PubMedGoogle Scholar
  773. Branch, M.N., Gollup, L.R.: A detailed analysis of the effects of d-amphetamine on behaviour under fixed-interval schedules. J. exp. Anal. Behav. 21, 519–539 (1974)PubMedGoogle Scholar
  774. Breckenridge, B.M., Norman, J.H.: The conversion of Phosphorylase b to Phosphorylase a in brain. J. Neurochem. 12, 51–57 (1965)PubMedGoogle Scholar
  775. Breda, J.B., Carlini, E.A., Sader, N.F.A.: Effects of chronic administration of (+)-amphetamine on maze performance of the rat. Brit. J. Pharmacol. 37, 79–86 (1969)Google Scholar
  776. Breese, G.R., Cooper, B.R., Smith, R.D.: Biochemical and behavioural alterations following 6-hydroxydopamine administration into brain. Frontiers in catecholamine research, pp.701–706. Usdin, E., Snyder, S. (Eds.) New York: Pergamon Press 1973Google Scholar
  777. Breese, G.R., Kopin, I.J., Weise, V.K.: Effects of amphetamine derivatives on brain dopamine and noradrenaline. Brit. J. Pharmacol. 38, 537–545 (1970)Google Scholar
  778. Brittain, R.T.: The intracerebral effects of noradrenaline and its modification by drugs in the mouse. J. Pharm. Pharmacol. 18, 621–623 (1966)PubMedGoogle Scholar
  779. Brittain, R.T., Jack, D., Spencer, P.S.J.: Mechanism of action of monoamine oxidase inhibitors in enhancing amphetamine toxicity. J. Pharm. Pharmacol. 16, 565–567 (1964)PubMedGoogle Scholar
  780. Brobeck, J.R., Larsson, S., Reyes, E.: A study of the electrical activity of the hypothalamic feeding mechanism. J. Physiol. (Lond.) 132, 358–364 (1956)Google Scholar
  781. Brodie, B.B., Shore, P.A.: A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann. N.Y. Acad. Sci. 66, 631–642 (1957)PubMedGoogle Scholar
  782. Brodie, B.B., Costa, E., Groppetti, A., Matsumoto, C.: Interaction between desipramine, tyramine and amphetamine at adrenergic neurones. Brit. J. Pharmacol. 34, 648–658 (1968)Google Scholar
  783. Brodie, B.B., Cho, A.K., Stefano, F.J.E., Gessa, G.L.: On mechanisms of norepinephrine release by amphetamine and tyramine and tolerance to their effects. Advanc. Biochem. Psychopharmacol. 1, 219–238 (1969)Google Scholar
  784. Brodie, B.B., Cho, A.K., Gessa, G.L.: Possible role of p-hydroxynorephedrine in the depletion of norepinephrine induced by d-amphetamine and in tolerance to this drug. In: Costa, E., Garattini, S. (Eds.): International Symposium on Amphetamines and Related Compounds, pp.217–230. New York: Raven Press 1970Google Scholar
  785. Broekkamp, C.L.E., Honig, W.M.M., Pauli, A.I., Rossum, J.M. van: Pharmacological suppression of eating behavior in relation to diencephalic noradrenergic receptors. Life Sci. 14, 473–481 (1974)PubMedGoogle Scholar
  786. Brown, A.M., Julian, T.: The body temperature response of two strains of mice to handling, saline and amphetamine. Int. J. Neuropharmacol. 7, 531–541 (1968)PubMedGoogle Scholar
  787. Brown, B.B.: CNS drug action and interaction in mice. Arch. int. Pharmacodyn. 128, 391–414 (1960)Google Scholar
  788. Brown, H.: D-amphetamine—chlorpromazine antagonism in a food reinforced operant. J. exp. Anal. Behav. 6, 395–398 (1963)PubMedGoogle Scholar
  789. Brown, H.: Drug-behaviour interaction affecting development of tolerance to d-amphetamine as observed in fixed ratio behaviour of rats. Psychol. Rep. 16, 917–921 (1965)PubMedGoogle Scholar
  790. Brown, H., Richards, R.K.: An interaction between drug effects and food reinforced “social” behaviour in pigeons. Arch. int. Pharmacodyn. 16, 286–293 (1966)Google Scholar
  791. Brownlee, G., Williams, G.W.: Potentiation of amphetamine and pethidine by monoamine-oxidase inhibitors, Lancet 1963a, 669Google Scholar
  792. Brownlee, G., Williams, G.W.: Monoamineoxidase inhibitors, Lancet 1963b, 1323Google Scholar
  793. Buening, M.K., Gibb, J.W.: Influence of methamphetamine and neuroleptic drugs on tyrosine hydroxylase activity. Europ. J. Pharmacol. 26, 30–34 (1974)Google Scholar
  794. Buffoni, F., Delia Corte, L.: Pig plasma benzylamine oxidase. Advanc. Biochem. Psychopharmacol. 5, 138–149 (1972)Google Scholar
  795. Bunney, B.S., Aghajanian, G.K.: Electrophysiological effects of amphetamine on dopaminergic neurones. Frontiers in catecholamine research, pp.957–962. Usdin, E., Snyder, S. (Eds.) New York: Pergamon Press 1973Google Scholar
  796. Bunney, B.S., Aghajanian, G.K., Roth, R.H.: Comparison of effects of l-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nature (Lond.) New Biol. 245, 123–125 (1973a)Google Scholar
  797. Bunney, B.S., Walters, J.R., Roth, R.H., Aghajanian, G.K.A.: Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. exp. Ther. 185, 560–571 (1973b)PubMedGoogle Scholar
  798. Burgen, A.S.V., Iversen, L.L.: The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Brit. J. Pharmacol. 25, 34–49 (1965)PubMedGoogle Scholar
  799. Burn, J.H., Hobbs, R.: A test for tranquilizing drugs. Arch. int. Pharmacodyn. 113, 290–295 (1958)PubMedGoogle Scholar
  800. Burn, J.P., Rand, M. J.: The action of sympathomimetic amines in animals treated with reserpine. J. Physiol (Lond.) 144, 314–336 (1958)Google Scholar
  801. Burton, R.M., Sodd, M.A., Goldin, A.: The analeptic action of lysergic acid diethylamide and d-amphetamine on reserpine-sedated mice. Arch. int. Pharmacodyn. 112, 188–198 (1957)PubMedGoogle Scholar
  802. Butcher, L.L., Andén, N.-E.: Effects of apomorphine and amphetamine on schedule-controlled behavior: reversal of tetrabenazine suppression and dopaminergic correlates. Europ. J. Pharmacol. 6, 255–264 (1969)Google Scholar
  803. Butcher, L.L., Butcher, S.G., Larsson, K.: Effects of apomorphine (+)-amphetamine, and nialamide on tetrabenazine-induced suppression of sexual behavior in the male rat. Europ. J. Pharmacol. 7, 283–288 (1969)Google Scholar
  804. Buus Lassen, J.: The effect of amantadine and (+)-amphetamine on motility in rats after inhibition of monoamine synthesis and storage. Psychopharmacologia (Berl.) 29, 55–64 (1973)Google Scholar
  805. Buyniski, J.P., Smith, M.L., Bierwagen, M.E.: Cardiovascular and gross behavioural effects of amphetamine, 2-ammo-l-(2, 5-dimethoxy-4-methylphenyl)propane (DOM) and 2-amino-l-(2, 5-dimethoxy-4-methyl-phenyl)butane (BL-3912A) in the conscious dog. Res. Commun. chem. Path. Pharmacol. 8, 213–221 (1974)Google Scholar
  806. Byrd, L.D.: Effects of d-amphetamine on schedule-controlled key pressing and drinking in the chimpanzee. J. Pharmacol. exp. Ther. 185, 633–641 (1973)PubMedGoogle Scholar
  807. Byrne-Quinn, E., Grover, R.F.: Aminorex (Menocil) and amphetamine: acute and chronic effects on pulmonary and systemic haemodynamics in the calf. Thorax 27, 127–131 (1972)PubMedGoogle Scholar
  808. Caccia, S., Cecchetti, G., Garattini, S., Jori, A.: Interaction of (+)-amphetamine with cerebral dopaminergic neurones in two strains of mice, that show different temperature responses to this drug. Brit. J. Pharmacol. 49, 400–406 (1973)Google Scholar
  809. Cahn, J., Herold, M.: Effects of amphetamines in rats and rabbits injected with alpha- and beta-adrenergic blocking agents. In: Costa, E., Garattini, S. (Eds.): International Symposium on Amphetamine and Related Compounds, pp.493–510. New York: Raven Press 1970Google Scholar
  810. Caldwell, J., Sever, P.S.: Evidence against a role for p-hydroxynorephinedrine in amphetamine tolerance. J. Pharmacol. (Paris) 5 suppl. 2, 14 (1974)Google Scholar
  811. Caldwell, J., Sever, P.S., Trelinski, M.: On the mechanism of the hyperthermia induced by amphetamine in the rat. J. Pharm. Pharmacol. 26, 821–823 (1974)PubMedGoogle Scholar
  812. Campbell, B.A., Fibiger, H.C.: Potentiation of amphetamine-induced arousal by starvation. Nature (Lond.) 223, 424–425 (1971)Google Scholar
  813. Campbell, J.C., Seiden, L.S.: Performance influence on the development of tolerance to amphetamine. Pharmacol. Biochem. Behav. 1, 703–708 (1973)PubMedGoogle Scholar
  814. Canfield, D.R., Antelman, S.M., Lippa, A.S., Fischer, A.E.: Amphetamine-induced alteration of biogenic amines and self-stimulation. Fed. Proc. 32, 705 (1973)Google Scholar
  815. Cappell, H., Ginsberg, R., Webster, C.D.: Amphetamine and conditioned anxiety. Brit. J. Pharmacol. 45, 525–531 (1972)Google Scholar
  816. Cappell, H., Le Blanc, A.E.: Conditioned aversion to saccharin by single administration of mescaline and d-amphetamine. Psychopharmacologia (Berl.) 22, 352–356 (1971)Google Scholar
  817. Cappell, H., Le Blanc, A.E.: Punishment of saccharin drinking by amphetamine in rats and its reversal by chlordiazepoxide. J. comp. physiol. Psychol. 85, 97–104 (1973)PubMedGoogle Scholar
  818. Cardo, B.: Action de l’amphétamine dextrogyre et de l’esérine sur un conditionnement de fuite et sur les phénomènes de discrimination. J. Physiol. (Paris) 51, 845–860 (1959)Google Scholar
  819. Carey, R.J.: Acquired aversion to amphetamine solutions. Pharmacol. Biochem. Behav. 1, 227–229 (1973a)Google Scholar
  820. Carey, R.J.: Disruption of timing behavior following amphetamine withdrawal. Physiol. Psychol. 1, 9–12 (1973b)Google Scholar
  821. Carey, R.J., Goodall, E.B.: A comparison of the effects of amphetamine on fixed interval performance maintained by electrical stimulation of the brain versus food reinforcement. Pharmacol. Biochem. Behav. 1, 237–239 (1973)Google Scholar
  822. Carey, R.J., Goodall, E.B.: Amphetamine induced taste aversion—a comparison of d-versus l-amphetamine. Pharmacol. Biochem. Behav. 2, 325–330 (1974)PubMedGoogle Scholar
  823. Carey, R.J., Goodall, E.B., Procopio, G.F.: Differential effects of d-amphetamine on fixed ratio 30 performance maintained by food versus brain stimulation reinforcement. Pharmacol. Biochem. Behav. 2, 193–198 (1974)PubMedGoogle Scholar
  824. Carey, R.J., Kritkausky, R.P.: Absence of a response rate dependent effect of d-amphetamine on a DRL schedule when reinforcement is signalled. Psychon. Sci. 26, 285–286 (1972)Google Scholar
  825. Carey, R.J., Salim, A.P.: Changes in d-amphetamine reactivity resulting from septum injury. Physiol. Behav. 5, 133–136 (1970)PubMedGoogle Scholar
  826. Carlini, E.A., Gonzalez, C.: Aggressive behavior induced by marihuana compounds and amphetamine in rats previously made dependent on morphine. Experientia (Basel) 28, 542–544 (1972)Google Scholar
  827. Carlisle, H.J.: Differential effects of amphetamine on food and water intake in rats with lateral hypothalamic lesions. J. comp. physiol. Psychol. 58, 47–54 (1964)PubMedGoogle Scholar
  828. Carlisle, H.J., Reynolds, R.W.: Effect of amphetamine on food intake in rats with brain stem lesions. Amer. J. Physiol. 201, 965–967 (1961)PubMedGoogle Scholar
  829. Carlson, N.J., Doyle, G.A., Bidder, T.G.: The effect of dl-amphetamine and reserpine on runway performance. Psychopharmacologia (Berl.) 8, 157–173 (1965)Google Scholar
  830. Carlsson, A.: Physiological and pharmacological release of monoamines in the central nervous system. In: Euler, U.S. von, Rosell, S., Uvnäs, B. (Eds.): Mechanisms of release of biogenic amines, pp.331–346. Glasgow: Pergamon Press 1966Google Scholar
  831. Carlsson, A.: Pharmacology of synaptic monoamine transmission. Progr. Brain Res. 31, 53–59 (1969)Google Scholar
  832. Carlsson, A.: Amphetamine and brain catecholamine. In: Costa, E., Garattini, S. (Eds.): International Symposium on Amphetamines and Related Compounds, pp.289–300. New York: Raven Press 1970Google Scholar
  833. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4, α-methyl-m-tyramine. Europ. J. Pharmacol. 5, 367–373 (1969)Google Scholar
  834. Carlsson, A., Fuxe, K., Hamberger, B., Lindqvist, M.: Biochemical and histochemical studies on the effects of imipramine like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta physiol. scand. 67, 481–497 (1966a)PubMedGoogle Scholar
  835. Carlsson, A., Fuxe, K., Hökfelt, T.: Effect of desmethylimipramine, protriptyline and (+)-amphetamine on fluorescence of central adrenergic neurons of rats pretreated with α-methyl-DOPA and tetrabenazine or reserpine. Europ. J. Pharmacol. 2, 196–201 (1968)Google Scholar
  836. Carlsson, A., Lindqvist, M., Dahlström, A., Fuxe, K., Masuoka, D.: Effects of the amphetamine group on intraneuronal brain amines in vivo and in vitro. J. Pharm. Pharmacol. 17, 521–523 (1965)PubMedGoogle Scholar
  837. Carlsson, A., Lindqvist, M., Fuxe, K., Hamberger, B.: The effect of (+)-amphetamine on various central and peripheral catecholamine-containing neurones. J. Pharm. Pharmacol. 18, 128–130 (1966b)PubMedGoogle Scholar
  838. Carlsson, A., Waldeck, B.: Inhibition of 3H-metaraminol uptake by antidepressive and related agents. J. Pharm. Pharmacol. 17, 243–244 (1965)PubMedGoogle Scholar
  839. Carlsson, A., Waldeck, B.: Effects of amphetamine, tyramine and protriptyline on reserpine-resistant amine-concentrating mechanisms of adrenergic nerves. J. Pharm. Pharmacol. 18, 252–253 (1966a)PubMedGoogle Scholar
  840. Carlsson, A., Waldeck, B.: Structure-activity relationships for release of 14C-octopamine from adrenergic nerves by phenylethylamines. Acta pharmacol. (Kbh.) 24, 255–262 (1966b)Google Scholar
  841. Carlsson, A., Waldeck, B.: Different mechanisms of drug induced release of noradrenaline and its congeners alfa-methylnoradrenaline and metaraminol. Europ. J. Pharmacol. 4, 165–168 (1968)Google Scholar
  842. Carlton, P.L.: Potentiation of the behavioral effects of amphetamine by imipramine. Psychopharmacologia (Berl.) 2, 364–376 (1961a)Google Scholar
  843. Carlton, P.L.: Augmentation of the behavioral effects of amphetamine by scopolamine. Psychopharmacologia (Berl.) 2, 377–380 (1961b)Google Scholar
  844. Carlton, P. L.: Scopolamine, amphetamine and light reinforced responding. Psychon. Sci. 5, 347–348 (1966)Google Scholar
  845. Carlton, P. L., Didamo, P.: Augmentation of the behavioral effects of amphetamine by atropine. J. Pharmacol. exp. Ther. 132, 91–96 (1961)PubMedGoogle Scholar
  846. Carlton, P.L., Wolgin, D.L.: Contingent tolerance to the anorexigenic effects of amphetamine. Physiol. Behav. 7, 221–223 (1971)PubMedGoogle Scholar
  847. Carr, L.A., Moore, K.E.: Norepinephrine: release from brain d-amphetamine in vivo. Science 164, 322–323 (1969)PubMedGoogle Scholar
  848. Carr, L.A., Moore, K.E.: Effects of amphetamine on the contents of norepinephrine and its metabolites in the effluent of perfused cerebral ventricles of the cat. Biochem. Pharmacol. 19, 2361–2374 (1970a)PubMedGoogle Scholar
  849. Carr, L.A., Moore, K.E.: Release of norepinephrine and normetanephrine from cat brain by central nervous system stimulants. Biochem. Pharmacol. 19, 2671–2675 (1970b)PubMedGoogle Scholar
  850. Castellano, C.: Lysergic acid diethylamide, amphetamine and chlorpromazine on water maze discrimination in mice. Psychopharmacologia (Berl.) 19, 16–25 (1971)Google Scholar
  851. Castellano, C.: Cocaine, pemoline and amphetamine on learning and retention of a discrimination test in mice. Psychopharmacologia (Berl.) 36, 67–76 (1974)Google Scholar
  852. Castellano, C., Sansone, E.M., Renzi, P., Annecker, L.: Central stimulant drugs on avoidance behaviour in hamsters. Pharmacol. Res. Commun. 3, 287–293 (1973)Google Scholar
  853. Cattabeni, F., Racagni, G., Groppetti, A.: P-hydroxynorephedrine: its selective distribution in different rat brain areas. Frontiers of catecholamine research, pp. 1035–1037. Usdin, E., Snyder, S. (Eds.) New York: Pergamon Press 1973Google Scholar
  854. Cattabeni, F., Revueita, A., Costa, E.: Effects of β-methoxy derivatives of 3-trifluoromethylphenylethylamine on food intake and brain serotonin content. Neuropharmacology 11, 753–760 (1972)PubMedGoogle Scholar
  855. Cession-Fossion, A.: La tyramine, à la différence de l’amphétamine, se comporte chez le rat comme une amine sympathicomimétique à action indirecte. J. Physiol. (Paris) 55, 223–223 (1963a)Google Scholar
  856. Cession-Fossion, A.: Sur les propriétés hypertensives de l’amphétamine et de la tyramine chez le rat. Arch. int. Physiol. 71, 382–392 (1963b)PubMedGoogle Scholar
  857. Cession-Fossion, A.: Action des amines sympathicomimétiques à action indirecte sur la médullo-surrénale du rat perfusée “in vitro”. Arch. int. Physiol. 75, 303–309 (1967)PubMedGoogle Scholar
  858. Chance, M.R.A.: Aggregation as a factor influencing the toxicity of sympathomimetic amines in mice. J. Pharmacol. exp. Ther. 87, 214–219 (1946)PubMedGoogle Scholar
  859. Chance, M.R.A.: Factors influencing the toxicity of sympathomimetic amines to solitary mice. J. Physiol. (Lond.) 89, 289–296 (1947)Google Scholar
  860. Chance, M.R.A., Mansour, T.E.: A chymographic study of the action of drugs on the liver fluke (Fasciola hepatica). Brit. J. Pharmacol. 4, 7–13 (1949)PubMedGoogle Scholar
  861. Chang, C. C.: Reversal by amphetamine of the protective effect of bretylium on reserpine-induced depletion of noradrenaline. J. Pharm. Pharmacol. 17, 818–820 (1965)PubMedGoogle Scholar
  862. Chang, C.C., Costa, E., Brodie, B.B.: Interaction of guanethidine with adrenergic neurons. J. Pharmacol. exp. Ther. 147, 303–312 (1965)PubMedGoogle Scholar
  863. Chappel, C.I., Rona, G., Balazs, T., Gaudry, R.: Comparison of cardiotoxic actions of certain sympathomimetic amines. Canad. J. Physiol. Pharmacol. 37, 35–40 (1959)Google Scholar
  864. Cheng, H.C., Long, J.P.: Effect of d- and l-amphetamine on 5-hydroxytryptamine receptors. Arch. int. Pharmacodyn. 204, 124–131 (1973)PubMedGoogle Scholar
  865. Chernov, H., Furness, P., Partyka, D., Plummer, A.J.: Age, confinement and aggregation as factors in amphetamine group toxicity in mice. J. Pharmacol. exp. Ther. 154, 346–349 (1966)PubMedGoogle Scholar
  866. Chevillard, C., Alexandre, J.-M.: In vitro effects on cardiac norepinephrine of angiotensin II and of two indirectly acting sympathomimetic amines (amphetamine and tyramine) a study of their combinations. Europ. J. Pharmacol. 19, 223–230 (1972)Google Scholar
  867. Chevillard, C., Duchène, N., Alexandre, J.-M.: Selective release of newly synthesized cardiac norepinephrine induced by angiotensin II. Europ. J. Pharmacol. 15, 8–14 (1971)Google Scholar
  868. Cheymol, M.J., Levassort, C.: Hyperthermie amphetaminique et curarisation par d-tubocurarine. Ann. pharm. franç. 15, 103–106 (1957)PubMedGoogle Scholar
  869. Chidsey, C.A., Harrison, D.C., Braunwald, E.: Release of norepinephrine from the heart by vasoactive amines. Proc. Soc. exp. Biol. (N.Y.) 109, 488–490 (1962)Google Scholar
  870. Chiel, H., Yehuda, S., Wurtman, R.J.: Development of tolerance in rats to the hypothermic effects of d-amphetamine and apomorphine. Life Sci. 14, 483–488 (1974)PubMedGoogle Scholar
  871. Chistoni, A., Beccari, E.: Richerche farmacologiche sulla fenilisopropilamina Nota III—Azione eccitante sul sistema nervoso centrale ed in particolare sul respiro. Arch. ital. Sci. farmacol. 9, 1–40 (1940)Google Scholar
  872. Chiueh, C.C., Moore, K.E.: Release of endogenously synthesized catechols from the caudate nucleus by stimulation of the nigro-striatal pathway and by the administration of d-amphetamine. Brain Res. 50, 221–225 (1973)PubMedGoogle Scholar
  873. Chiueh, C.C., Moore, K.E.: Relative potencies of d- and l-amphetamine on the release of dopamine from cat brain in vivo. Res. Commun. chem. Path. Pharmacol. 7, 189–199 (1974a)Google Scholar
  874. Chiueh, C.C., Moore, K.E.: In vivo release of endogenously synthesized catecholamines from the cat brain evoked by electrical stimulation and by d-amphetamine. J. Neurochem. 23, 159–168 (1974b)PubMedGoogle Scholar
  875. Chiueh, C.C., Moore, K.E.: Effects of alpha-methyltyrosine on d-amphetamine induced release of endogenously synthesized and exogenously administered catecholamines from the cat brain in vivo. J. Pharmacol. exp. Ther. 190, 100–108 (1974c)PubMedGoogle Scholar
  876. Christie, J.E., Crow, T.J.: Central actions of amphetamine and ephedrines after unilateral lesions of dopamine neurones. Brit. J. Pharmacol. 41, 405 (1971a)Google Scholar
  877. Christie, J.E., Crow, T.J.: Turning behaviour as an index of the action of amphetamines and ephedrines on central dopamine containing neurones. Brit. J. Pharmacol. 43, 658–667 (1971b)Google Scholar
  878. Chu, H., Opitz, K., Intemann, E.: Über die Bedeutung der Schilddrüse für die stoffwechselsteigernde Wirkung von Amphetamin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 263, 358–362 (1969)Google Scholar
  879. Cicala, G.A., Kremer, E.: The effect of shock intensity and d-amphetamine on avoidance learning. Psychon. Sci. 14, 41–42 (1969)Google Scholar
  880. Clark, F.C., Steele, B.J.: Effects of d-amphetamine on performance under a multiple schedule in the rat. Psychopharmacologia (Berl.) 9, 157–169 (1966)Google Scholar
  881. Clark, W.C., Blackman, H.J., Preston, J.E.: Certain factors in aggregated mice d-amphetamine toxicity. Arch. int. Pharmacodyn. 170, 350–363 (1967)PubMedGoogle Scholar
  882. Clay, G.A., Cho, A.K., Roberfroid, M.: Effect of diethylaminoethyl diphenylpropylacetate hydrochloride (SKF-525A) on the norepinephrine depleting actions of d-amphetamine. Biochem. Pharmacol. 20, 1821–1831 (1971)PubMedGoogle Scholar
  883. Clineschmidt, B.V., McGuffm, J.C., Werner, A.B.: Role of monoamines in the anorexigenic actions of fenfluramine, amphetamine and p-chloramphetamine. Europ. J. Pharmacol. 27, 313–323 (1974)Google Scholar
  884. Clymer, N. V., Seifter, J.: A method of screening sympathomimetic amines for stimulant action on the cerebrum. J. Pharmacol. exp. Ther. 89, 149–152 (1947)PubMedGoogle Scholar
  885. Cohen, M., Lal, H.: A study of the mechanism of amphetamine toxicity in aggregated mice. Pharmacologist 5, 261 (1963)Google Scholar
  886. Cole, J., Glees, P.: Some effects of methylphenidate (Ritalin) and amphetamine on normal and leucotomized monkeys. J. ment. Sci. 103, 406–417 (1957)PubMedGoogle Scholar
  887. Cole, S.O.: Further study of interactive effects of amphetamine and food deprivation. Psychol. Rep. 16, 625–630 (1965)PubMedGoogle Scholar
  888. Cole, S.O.: Increased suppression of food intake by amphetamine in rats with anterior hypothalamic lesions. J. comp. physiol. Psychol. 61, 302–305 (1966)PubMedGoogle Scholar
  889. Cole, S.O.: Experimental effects of amphetamine: a review. Psychol. Bull. 68, 81–90 (1967)PubMedGoogle Scholar
  890. Cole, S.O.: The depression of operant behaviour and retarding action on discrimination learning by amphetamine. Psychon. Sci. 10, 19–20 (1968)Google Scholar
  891. Cole, S.O.: Amphetamine depression of a multiple CRF-EXT operant schedule: a sex comparison. Psychon. Sci. 16, 143–144 (1969)Google Scholar
  892. Cole, S.O.: On the combined effect of amphetamine and food deprivation: a reply to Gollub and Mann. Psychopharmacologia (Berl.) 16, 426–429 (1970)Google Scholar
  893. Cole, S.O.: The increased effectiveness of amphetamine with anterior hypothalamic lesions. Pharmacol. Res. Commun. 3, 255–260 (1971)Google Scholar
  894. Cole, S.O.: The relationship of amphetamine-induced anorexia and freezing under free-feeding conditions. Pharmacol. Res. Commun. 4, 71–78 (1972)Google Scholar
  895. Cole, S.O.: Hypothalamic feeding mechanisms and amphetamine anorexia. Psychol. Bull. 79, 13–20 (1973)PubMedGoogle Scholar
  896. Cole, S.O., Gay, P.E.: Brain mechanisms underlying the effects of amphetamine on feeding and non-feeding behaviours: dissociation and overlap. Physiol. Psychol. 2, 80–88 (1974)Google Scholar
  897. Colville, K.L, Chaplin, E.: Sympathomimetics as analgesics: effects of methoxamine, methamphetamine, metaraminol and norepinephrine Life Sci. 3, 315–322 (1964)PubMedGoogle Scholar
  898. Commarato, M.A., Lum, B.K.B.: Potentiation of the pressor response to angiotensin by amphetamine and ephedrine. Europ. J. Pharmacol. 10, 25–33 (1970)Google Scholar
  899. Consolo, S., Garattini, S., Ghielmetti, R., Valzelli, L.: Concentrations of amphetamine in the brain in normal or aggressive mice. J. Pharm. Pharmacol. 17, 666 (1965a)PubMedGoogle Scholar
  900. Consolo, S., Garattini, S., Valzelli, L.: Amphetamine toxicity in aggressive mice. J. Pharm. Pharmacol. 17, 53–54 (1965b)PubMedGoogle Scholar
  901. Consolo, S., Garattini, S., Valzelli, L.: Sensitivity of aggressive mice to centrally acting drugs. J. Pharm. Pharmacol. 17, 594–595 (1965c)PubMedGoogle Scholar
  902. Consolo, S., Ladinsky, H., Garattini, S.: Effect of several dopaminergic drugs and trihexyphenidyl on cholinergic parameters in the rat striatum. J. Pharm. Pharmacol. 26, 275–277 (1974)PubMedGoogle Scholar
  903. Consolo, S., Ladinsky, H., Peri, G., Garattini, S.: Effect of central stimulants and depressants on mouse brain acetylcholine and choline levels. Europ. J. Pharmacol. 18, 251–255 (1972)Google Scholar
  904. Cook, J.D., Schanberg, S.M.: The effects of methamphetamine on behavior and on the uptake, release and metabolism of norepinephrine. Biochem. Pharmacol. 19, 1165–1179 (1970)Google Scholar
  905. Cook, L., Catania, A.C.: Effect of drugs on avoidance and escape behaviour. Fed. Proc. 23, 818–835 (1964)PubMedGoogle Scholar
  906. Cools, A.R.: The function of dopamine and its antagonism in the caudate nucleus of cats in relation to the stereotyped behaviour. Arch. int. Pharmacodyn. 194, 259–269 (1971)PubMedGoogle Scholar
  907. Cools, A.R., Rossum, J.M. van: Caudal dopamine and stereotyped behaviour of cats. Arch. int. Pharmacodyn. 187, 163–173 (1970)PubMedGoogle Scholar
  908. Cooper, B.R., Cott, J.M., Breese, G.R.: Effects of catecholmine depleting drugs and amphetamine on self-stimulation of brain following various 6-hydroxydopamine treatments. Psychopharmacologia (Bed.) 37, 235–248 (1974)Google Scholar
  909. Cooper, S.J., Joyce, D., Summerfîeld, A.: Self-stimulation of the brain after administration of an amphetamine-barbiturate mixture. Brit. J. Pharmacol. 36, 192 (1969)Google Scholar
  910. Cooper, S.J., Joyce, D., Summerfield, A.: Termination of treatment with an amphetamine-barbiturate mixture at different stages of training. Activ. nerv. sup. (Praha) 14, 266–268 (1972)Google Scholar
  911. Coper, H., Lison, H., Rommelspacher, H., Schulze, G., Strauss, S.: The influence of adrenergic receptor-blocking agents, amphetamine and 6-aminonicotinamide on thermoregulation. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 270, 378–391 (1971)Google Scholar
  912. Corrodi, H., Fuxe, H., Hökfelt, T.: The effect of some psychoactive drugs on central monoamine neurons. Europ. J. Pharmacol. 1, 363–368 (1967)Google Scholar
  913. Corrodi, H., Fuxe, K., Ljungdahl, Å., Ögren, S.-O.: Studies on the action of some psychoactive drugs on central noradrenaline neurones after inhibition of dopamine-β-hydroxylase. Brain Res. 24, 451–470 (1970)PubMedGoogle Scholar
  914. Corson, S.A., Corson, E.O.L., Kirilcuk, V., Arnold, L.E.: Tranquilizing effects of d-amphetamine on hyperkinetic untrainable dogs. Fed. Proc. 30, 206 (1971)Google Scholar
  915. Costa, E., Carenzi, A., Guidotti, A., Revuelta, A.: Narcotic analgesics and the regulation of neuronal catecholamine stores. Frontiers of catecholamine research, pp.1003–1010. Usdin, E., Snyder, S. (Eds.) New York: Pergamon Press 1973Google Scholar
  916. Costa, E., Groppetti, A.: Biosynthesis and storage of catecholamines in tissues of rats injected with various doses of d-amphetamine. In: Costa, E., Garattini, S. (Eds.): International symposium on amphetamines and related compounds, pp.231–355. New York: Raven Press 1970Google Scholar
  917. Costa, E., Groppetti, A.: Relationships between biochemical and pharmacological responses elicited by dextroamphetamine. In: Ellinwood, E. H., Cohen, S. (Eds.): Current concepts on amphetamine abuse, pp.117–124. DHEW Publ. No (HSM) 72–9085. Washington D.C.: U.S. Government Printing Office 1972Google Scholar
  918. Costa, E., Groppetti, A., Naimzada, M.K.: Effects of amphetamine on the turn-over rate of brain catecholamines and motor activity. Brit. J. Pharmacol. 44, 742–751 (1972)Google Scholar
  919. Costa, E., Groppetti, A., Revuelta, A.: Action of fenfluramine on monoamine stores of rat tissues. Brit. J. Pharmacol. 41, 57–64 (1971)Google Scholar
  920. Costall, B., Naylor, R.J.: Modification of amphetamine effects by intracerebrally administered anticholinergic agents. Life Sci. 11, 239–253 (1972)Google Scholar
  921. Costall, B., Naylor, R.J.: The role of the substantia nigra in the locomotor stimulant action of amphetamine. Brit. J. Pharmacol. 49, 29–36 (1973)Google Scholar
  922. Costall, B., Naylor, R.J.: Extrapyramidal and mesolimbic involvement with the stereotypic activity of d- and l-amphetamine. Europ. J. Pharmacol. 25, 121–129 (1974)Google Scholar
  923. Costall, B., Naylor, R.J., Ohey, J.E.: Stereotypic and anticataleptic activities of amphetamine after intracerebral injection. Europ. J. Pharmacol. 18, 83–94 (1972a)Google Scholar
  924. Costall, B., Naylor, R.J., Olley, J.E.: The substantia nigra and stereotyped behaviour. Europ. J. Pharmacol. 18, 95–106 (1972b)Google Scholar
  925. Costall, B., Naylor, R.J., Wright, T.: The use of amphetamine induced stereotyped behaviour as a model for the experimental evaluation of antiparkinson agents. Arzneimittel-Forsch. 22, 1178–1183 (1972c)Google Scholar
  926. Cowan, F.F., Cannon, C., Koppanyi, T., Maengwyn-Davis, G.D.: Reversal of phenylalkylamine tachyphylaxis by norepinephrine. Science 134, 1069–1070 (1961)PubMedGoogle Scholar
  927. Cox, B., Tha, S.J.: Effects of amantadine and l-dopa on apomorphine- and d-amphetamine-induced stereotyped behaviour in rats. Europ. J. Pharmacol. 24, 96–100 (1973)Google Scholar
  928. Cox, R.H., Maickel, R.P.: Comparison of anorexigenic and behavioural potency of phenylakylamines. J. Pharmacol. exp. Ther. 181, 1–9 (1972)PubMedGoogle Scholar
  929. Coyle, J.T., Snyder, S.H.: Antiparkinsonian drugs: inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action. Science 166, 899–901 (1969a)PubMedGoogle Scholar
  930. Coyle, J.T., Snyder, S.H.: Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J. Pharmacol. exp. Ther. 170, 221–231 (1969b)PubMedGoogle Scholar
  931. Crabtree, J.M., Moyer, K. E.: Sex differences in fighting and defense induced in rats by shock and d-amphetamine during morphine abstinence. Physiol. Behav. 11, 337–343 (1973)PubMedGoogle Scholar
  932. Craig, A.L., Kupferberg, H.J.: Hyperthermia in d-amphetamine toxicity in aggregated mice of different strains. J. Pharmacol. exp. Ther. 180, 616–624 (1972)PubMedGoogle Scholar
  933. Craigmill, A.L., Canafax, D.M., Curties, F.R.: The interaction of Δ 9 -tetrahydrocannabinol and d-amphetamine in aggregated mice. Res. Commun. chem. Path. Pharmacol. 9, 229–241 (1974)Google Scholar
  934. Craigmill, A.L., Kupferberg, H.J., Miller, J.W.: Heat production and heat loss in d-amphetamine hyperthermia in aggregated Swiss Webster and BDF1 mice. Toxicol. appl. Pharmacol. 26, 362–369 (1973)PubMedGoogle Scholar
  935. Creese, I., Iversen, S.D.: Amphetamine response in rat after dopamine neurone destruction. Nature (Lond.) New Biol. 239, 247–248 (1972)Google Scholar
  936. Creese, I., Iversen, S.D.: Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamme. Brain Res. 55, 369–382 (1973)PubMedGoogle Scholar
  937. Creese, I., Iversen, S.D.: The role of forebrain dopamine systems in amphetamine induced stereotyped behaviour in the rat. Psychopharmacologia (Berl.). 39, 345–357 (1974)Google Scholar
  938. Crismon, C.A., Tainter, M.L.: Comparative pressor efficiency of sympathomimetic amines in the normal state and in decerebrate shock J. Pharmacol. exp. Ther. 66, 146–170 (1938)Google Scholar
  939. Crow, T.J.: Mode of enhancement of selfstimulation in rats by methamphetamine. Nature (Lond.) 224, 709–710 (1969)Google Scholar
  940. Crow, T.J.: A map of the rat mesencephalon for electrical selfstimulation. Brain Res. 36, 265–273 (1972a)PubMedGoogle Scholar
  941. Crow, T.J.: Catecholamine-containing neurones and electrical selfstimulation: 1. A review of some data. Psychol. Med. 2, 414–421 (1972b)PubMedGoogle Scholar
  942. Crow, T.J., Gillbe, C.: Methamphetamine-protryptiline interaction in rotating rats. Brit. J. Pharmacol. 38, 458 (1970)Google Scholar
  943. Crowley, T.J.: Dose-dependent facilitation or suppression of rat fighting by methamphetamine, phenobarbital or imipramine. Psychopharmacologia (Berl.) 27, 213–222 (1972)Google Scholar
  944. Crowley, T.P., Sisemore, D.D.: The failure of methamphetamine hydrochloride to produce dissociation of an escape response. Psychon. Sci. 28, 50–52 (1972)Google Scholar
  945. Dallemagne, G.H.: Action de la chlorpromazine, du méprobamate de l’amphétamine sur trios comportements conditionnés sous controle aversif. Arch. int. Pharmacodyn. 183, 46–59 (1970)PubMedGoogle Scholar
  946. Dalrymple, S.D., Stretch, R.: Effects of amphetamine and chlorpromazine on second-order escape behavior in squirrel monkeys. Psychopharmacologia (Berl.) 21, 268–282 (1971)Google Scholar
  947. Dannenburg, W.N., Kardian, B.C.: The effect of fenfluramine and methamphetamine on free fatty acid release in epididymal fat cells of the rat. Arch. int. Pharmacodyn. 177, 196–210 (1969)PubMedGoogle Scholar
  948. Dannenburg, W.N., Kardian, B.C: Metabolic effects of fenfluramine and methamphetamine on free fatty acid release and glucose utilization in epididymal fat cells of the rat. In: Costa, E., Garattini, S. (Eds.): International Symposium on Amphetamines and Related Compounds, pp. 597–610. New York: Raven Press 1970Google Scholar
  949. D’Arcy, P.F., Spurring, N.W.: The effect of Cortisol and corticotrophin on amphetamine toxicity in mice under crowded and noncrowded conditions. J. Endocr. 22, 35–36 (1961)Google Scholar
  950. Davey, M.J., Farmer, J.B.: The mode of action of tyramine. J. Pharm. Pharmacol. 15, 178–182 (1963)PubMedGoogle Scholar
  951. Davies, J.A., Jackson, B., Redfern, P. H.: The effect of amantadine, l-dopa, (+)-amphetamine and apomorphine on the acquisition of the conditioned avoidance response. Neuropharmacology 13, 199–204 (1974)PubMedGoogle Scholar
  952. Davis, G.D.: Effects of central excitant and depressant drugs on locomotor activity in the monkey. Amer. J. Physiol. 188, 619–623 (1957)PubMedGoogle Scholar
  953. Davis, R.A., Horlington, M.: Effects of reserpine pre-treatment on the protective action of amphetamine and phenoxypropazine in the phenylbenzoquinone induced writhing syndrome in mice. Nature (Lond.) 201, 306–307 (1964)Google Scholar
  954. Davis, W.M., Logston, D.G., Hickenbottom, J.P.: Antagonism of acute amphetamine intoxication by haloperidol and propranolol. Toxicol. appl. Pharmacol. 29, 397–403 (1974)PubMedGoogle Scholar
  955. Davis, W.M., Smith, S.G.: Alpha-methyltyrosine to prevent selfadministration of morphine and amphetamine. Curr. ther. Res. 14, 814–819 (1972)PubMedGoogle Scholar
  956. Davis, W.M., Smith, S.G.: Blocking effect of α-methyltyrosine on amphetamine based reinforcement. J. Pharm. Pharmacol. 25, 174–177 (1973)PubMedGoogle Scholar
  957. Day, M.D.: Effect of sympathomimetic amines on the blocking action of guanethidine, bretylium and xylocholine. Brit. J. Pharmacol. 18, 421–439 (1962)PubMedGoogle Scholar
  958. Day, M.D.: The lack of crossed tachyphylaxis between tyramine and some other indirectly acting sympathomimetic amines. Brit. J. Pharmacol. 30, 631–643 (1967)PubMedGoogle Scholar
  959. Day, M.D., Rand, M.J.: Antagonism of guanethidine by dexamphetamine and other related sympathomimetic amines. J. Pharm. Pharmacol. 14, 541–549 (1962)PubMedGoogle Scholar
  960. Day, M.D., Rand, M.J.: Evidence for a competitive antagonism of guanethidine by dexamphetamine. Brit. J. Pharmacol. 20, 17–28 (1963a)PubMedGoogle Scholar
  961. Day, M.D., Rand, M.J.: Tachyphylaxis to some sympathomimetic amines in relation to monoamine oxidase. Brit. J. Pharmacol. 21, 84–96 (1963b)PubMedGoogle Scholar
  962. Dean, H.G., Hughes, I.E.: Effect of amphetamine on the uptake release and effectiveness of xylocholine in the guinea-pig vas deferens. J. Pharm. Pharmacol. 23, 606–611 (1971)PubMedGoogle Scholar
  963. Dean, H.G., Hughes, I.E.: Increased release of xylocholine (TM 10) from guinea-pig vas deferens treated with amphetamine sulphate. J. Pharm. Pharmacol. 24, 183–188 (1972)PubMedGoogle Scholar
  964. Deffenu, G., Bartolini, A., Pepeu, G.: Effect of amphetamine on cholinergic systems of the cerebral cortex of the cat. In: Costa, E., Garattini, S. (Eds.): International Symposium on Amphetamines and Related Compounds, pp.357–368. New York: Raven Press 1970Google Scholar
  965. Delini-Stula, A., Morpurgo, C.: Influence of amphetamine and scopolamine on the catalepsy induced by diencephalic lesions in rats. Int. J. Neuropharmacol. 7, 391–394 (1968)PubMedGoogle Scholar
  966. Delphaut, J.: Action de la digitaline, de l’ouabaine, de la sparteine, de la procaine, du pentame-thazene et du metioplegium sur le hypertoxicit amph taminique de groupement chez la souris blanche. Arch. int. Pharmacodyn. 154, 434–437 (1965)PubMedGoogle Scholar
  967. Del Rio, J., Fuentes, J. A.: Further studies on the antagonism of stereotyped behaviour induced by amphetamine. Europ. J. Pharmacol. 8, 73–78 (1969)Google Scholar
  968. D’Encarnacao, P.S., Anderson, K.: Effects of lithium pretreatment on amphetamine and DMI tetrabenazine produced psychomotor behavior. Dis. nerv. Syst. 31, 494–496 (1970)PubMedGoogle Scholar
  969. D’Encarnacao, P.S., D’Encarnacao, P., Tapp, J.T.: Potentiation of amphetamine induced psychomotor activity by diethyldithiocarbamate. Arch. int. Pharmacodyn. 182, 186–189 (1969)PubMedGoogle Scholar
  970. Deneau, G., Yanagita, T., Seevers, M.H.: Self-administration of psychoactive substances by the monkey. A measure of psychological dependence. Psychopharmacologia (Berl.) 16, 30–48 (1969)Google Scholar
  971. Dengler, H.J., Spiegel, H.E., Titus, E.O.: Effects of drugs on uptake of isotopic norepinephrine by cat tissues. Nature (Lond.) 191, 816–817 (1961)Google Scholar
  972. Detrick, L.E., Millikan, R., Modern, F.S., Thienes, C.H.: On the pharmacology of phenylisopropylamine (benzedrine). J. Pharmacol. exp. Ther. 60, 56–68 (1937)Google Scholar
  973. Dewar, A.J., Winterburn, A.K.: Amphetamine and RNA and protein metabolism in rat brain. Brain Res. 59, 359–370 (1973)PubMedGoogle Scholar
  974. Dewhurst, W.G., Marley, E.,: Differential effect of sympathomimetic amines on the central nervous system. Animal behaviour and drug action, pp.175–188. Steinberg, H. (Ed.) London: Churchill Ltd. 1964Google Scholar
  975. Dewhurst, W.G., Marley, E.: The effects of alpha-methyl derivatives of noradrenaline, phenylethylamine and tryptamine on the central nervous system of the chicken. Brit. J. Pharmacol. 25, 682–704 (1965a)PubMedGoogle Scholar
  976. Dewhurst, W.G., Marley, E.: Action of sympathomimetic and allied amines on the central nervous system of the chicken. Brit. J. Pharmacol. 25, 705–727 (1965b)PubMedGoogle Scholar
  977. Dews, P.B.: The measurement of the influence of drugs on voluntary activity in mice. Brit. J. Pharmacol. 8, 46–48 (1953)PubMedGoogle Scholar
  978. Dews, P.B.: Studies on behaviour. II. The effects of pentobarbital, methamphetamine and scopolamine on performances in pigeons involving discriminations. J. Pharmacol. exp. Ther. 115, 380–389 (1955)PubMedGoogle Scholar
  979. Dews, P. B.: Studies on behavior. IV. Stimulant actions of methamphetamine. J. Pharmacol. exp. Ther. 122, 137–147 (1958a)PubMedGoogle Scholar
  980. Dews, P.B.: Analysis of effects of psychopharmacological agents in behavioural terms. Fed. Proc. 17, 1024–1030 (1958b)PubMedGoogle Scholar
  981. Dews, P.B., Morse, W.H.: Behavioral pharmacology. Ann. Rev. Pharmacol. 1, 145–174 (1961)Google Scholar
  982. Diaz, J.-L., Huttunen, M.O.: Altered metabolism of serotonin in the brain of the rat after chronic ingestion of d-amphetamine. Psychopharmacologia (Berl.) 23, 365–372 (1972)Google Scholar
  983. DiCarlo, R., Edel, S., Randrianarisoa, H., Mandel, P.: Amphetamine and cerebral RNA metabolism. Pharmacol. Res. Commun. 4, 275–286 (1972)Google Scholar
  984. Dingell, J.V., Owens, M.L., Norvich, M.R., Sulser, F.: On the role of norepinephrine biosynthesis in the central action of amphetamine. Life Sci. 6, 1155–1162 (1967)PubMedGoogle Scholar
  985. Dispensa, J., Barrett, M.E.: The effect of amphetamine (benzedrine) sulphate on maze performance of the albino rat. J. Psychol. 11, 397–410 (1941)Google Scholar
  986. Divac, I.: Drug-induced syndromes in rats with large chronic lesions in the corpus striatum. Psychopharmacologia (Berl.) 27, 171–178 (1972)Google Scholar
  987. Doda, M., György, L., Nador, K.: Influence of d-amphetamine on the effects of adrenergic neuron blocking agents. Arch. int. Pharmacodyn. 164, 247–257 (1966)Google Scholar
  988. Dolfini, E., Del Angel, R.A., Garattini, S., Valzelli, L.: Brain catecholamine release by dexamphetamine in three strains of mice. Europ. J. Pharmacol. 9, 333–336 (1970)Google Scholar
  989. Dolfini, E., Garattini, S., Valzelli, L.: Activity of (+)-amphetamine at different environmental temperatures in three strains of mice. J. Pharm. Pharmacol. 21, 871–872 (1969a)PubMedGoogle Scholar
  990. Dolfini, E., Garattini, S., Valzelli, L.: Different sensitivity to amphetamine of three strains of mice. Europ. J. Pharmacol. 7, 220–223 (1969b)Google Scholar
  991. Dolfini, E., Kobayashi, M.: Studies with amphetamine in hyper- and hypothyroid rats. Europ. J. Pharmacol. 2, 65–66 (1967)Google Scholar
  992. Dolfini, E., Tansella, M., Valzelli, L., Garattini, S.: Further studies on the interaction between desipramine and amphetamine. Europ. J. Pharmacol. 5, 185–190 (1969c)Google Scholar
  993. Dominic, J.A., Moore, K.E.: Acute effects of α-methyltyrosine on brain catecholamine levels and on spontaneous and amphetamine stimulated motor activity in mice. Arch. int. Pharmacodyn. 178, 166–170 (1969a)PubMedGoogle Scholar
  994. Dominic, J.A., Moore, K. E.: Supersensitivity to the central stimulant actions of adrenergic drugs following discontinuation of a chronic diet of α-methyltyrosine. Psychopharmacologia (Berl.) 15, 96–101 (1969b)Google Scholar
  995. Domino, E.F., Caldwell, D.F., Henke, R.: Effects of psychoactive agents on acquisition of conditioned pole jumping in rats. Psychopharmacologia (Berl.) 8, 285–289 (1965)Google Scholar
  996. Domino, E.F., Olds, M.E.: Effects of d-amphetamine, scopolamine, chlordiazepoxide and diphenylhydantoin on self-stimulation behavior and brain acetylcholine. Psychopharmacologia (Berl.) 23, 1–16 (1972)Google Scholar
  997. Domino, E.F., Wilson, A.: Psychotropic drug influences on brain acetylcholine utilization. Psychopharmacologia (Berl.) 25, 291–298 (1972)Google Scholar
  998. Dorris, R.L., Shore, P.A.: Interaction of apomorphine, neuroleptics and stimulants with α-methyl-m-tyramine, a false dopaminergic transmitter. Biochem. Pharmacol. 23, 867–872 (1974)PubMedGoogle Scholar
  999. Doty, B.A., Doty, L.A.: Facilitative effects of amphetamine on avoidance conditioning in relation to age and problem difficulty. Psychopharmacologia (Berl.) 9, 234–241 (1966)Google Scholar
  1000. Downing, O.A.: Effect of amphetamine on the transmission of repetitive impulses through the isolated superior cervical ganglion of the rat. Brit. J. Pharmacol. 44, 71–79 (1972)Google Scholar
  1001. Drudi-Baracco, C., Halpern, B.N., Bessirard, D.: Psychopharmacologie de l’imipramine étudiée à l’aide de la toxicité de groupe. C.R. Soc. Biol. (Paris) 157, 1236–1240 (1963)Google Scholar
  1002. Drummond, G.L, Bellward, G.: Studies on Phosphorylase b kinase from neural tissues. J. Neurochem. 17, 475–482 (1970)PubMedGoogle Scholar
  1003. Duarte-Escalante, O., Ellinwood, E.H. Jr.: Effects of chronic amphetamine intoxication on adrenergic and cholinergic structures in the central nervous system: Histochemical observations in cats and monkeys. In: Ellinwood, E.H., Cohen, S. (Eds.): Current concepts on amphetamine abuse, pp. 97–106. DHEW Publ. No. (HSM) 72–9085. Washington D.C.: U.S. Government Printing Office 1972Google Scholar
  1004. Dubnick, B., Ruchi, E.W., Salama, A.L: A comparison of 1-p-acetyldeoxyephedrine and 4-methyl-ethyl-m-tyramine as a lowering of brain serotonin and their antagonism by antidepressants. Europ. J. Pharmacol. 22, 121–128 (1973)Google Scholar
  1005. Dudderidge, H.J., Gray, J.A.: Joint effects of sodium amylobarbitone and amphetamine sulphate on resistance to extinction of a rewarded running response in the rat. Psychopharmacologia 35, 365–370 (1974)PubMedGoogle Scholar
  1006. Duhault, J., Verdavainne, C.: Modification du taux de sérotonine cérébrale chez le rat par le trifluorométhyl-phényl-2-éthyl amino propane (Fenfluramine 768 S). Arch. int. Pharmacodyn. 170, 276–286 (1967)Google Scholar
  1007. Eble, J.N., Rudzik, A.D.: The potentiation of the pressor response to tyramine by amphetamine in the anesthetized dog. J. Pharmacol. exp. Ther. 150, 375–381 (1965)PubMedGoogle Scholar
  1008. Eble, J.N, Rudzik, A.D.: The blockade of the pressor response to tyramine by amphetamine in the reserpine-treated dog. J. Pharmacol. exp. Ther. 153, 62–69 (1966a)PubMedGoogle Scholar
  1009. Eble, J.N., Rudzik, A.D.: Amphetamine: augmentation of pressor effects of tyramine in rats. Proc. Soc. exp. Biol. (N.Y.) 122, 1059–1060 (1966b)Google Scholar
  1010. Eble, J.N., Rudzik, A.D.: Interaction between amphetamine and sympathomimetic agents on the cardiovascular system. In: Costa, E., Garattini, S. (Eds.): International symposium on amphetamines and related compounds, pp. 513–529. New York: Raven Press 1970Google Scholar
  1011. Ebstein, R.P., Ebstein, B.S., Samuel, D., Berger, B.D.: Differential sensitivity of amygdala and hypothalamus to amphetamine induced release of norepinephrine. J. Neurochem. 19, 2703–2705 (1972)PubMedGoogle Scholar
  1012. Ehrich, W.E., Krumbhaar, E.B.: The effects of large doses of benzedrine sulphate on the albino rat: functional and tissue changes. Ann. intern. Med. 10, 1874–1888 (1937)Google Scholar
  1013. Ehrich, W.E., Lewy, F.H., Krumbhaar, E.B.: Experimental studies upon toxicity of benzedrine sulphate in various animals. Amer. J. med. Sci. 198, 785–803 (1939)Google Scholar
  1014. El Guedri, H., Jacquot, C., Rapin, J., Cohen, Y.: Metabolism, regional distribution and pharmacokinetics of para-hydroxynorephedrine in the rat brain. J. Pharmacol. (Paris) 4, 453–463 (1973)Google Scholar
  1015. Eliasson, M., Michanek, A., Meyersson, B.J.: A differential inhibitory action of LSD and amphetamine on copulatory behaviour in the female rat. “Animal Pharm.” Uppsala University Biomedical Center, Uppsala, pp.22 1972Google Scholar
  1016. Elkes, J., Elkes, C., Bradley, P.B.: The effect of some drugs on the electrical activity of the brain and on behaviour. J. ment. Sci. 100, 125–128 (1954)PubMedGoogle Scholar
  1017. Ellinwood, E.H. Jr.: “Accidental Conditioning” with chronic methamphetamine intoxication: implications for a theory of drug habituation. Psychopharmacologia (Berl.) 21, 131–138 (1971a)Google Scholar
  1018. Ellinwood, E.H. Jr.: Comparative methamphetamine intoxication in experimental animals. Pharmacopsychiat. Neuropsychopharmakol. 4, 351–361 (1971b)Google Scholar
  1019. Ellinwood, E.H. Jr., Balster, R.L.: Rating the behavioural effects of amphetamine; Europ. J. Pharmacol. 28, 35–41 (1974)Google Scholar
  1020. Ellinwood, E.H. Jr., Duarte-Escalante, O.: Chronic methamphetamine intoxication in three species of experimental animals. In: Ellinwood, E.H., Cohen, S. (Eds.): Current concepts on amphetamine abuse, pp.59–68. DHEW Publ, No. (HSM) 72–9085. Washington D.C: U.S. Government Printing Office 1972Google Scholar
  1021. Ellinwood, E.H. Jr., Escalante, O.: Behavior and histophathological findings during chronic methedrine intoxication. Biol. Psychiatry 2, 27–39 (1970a)PubMedGoogle Scholar
  1022. Ellinwood, E.H. Jr., Escalante, O.: Chronic amphetamine effect on the olfactory forebrain. Biol. Psychiatry 2, 189–203 (1970b)PubMedGoogle Scholar
  1023. Ellinwood, E. H. Jr., Sudilovsky, A., Grabowy, R.: Olfactory forebrain seizures induced by methamphetamine and disulfiram. Biol. Psychiatry 7, 89–99 (1973)PubMedGoogle Scholar
  1024. Ellinwood, E. H. Jr., Sudilovsky, A., Nelson, L.M.: Behavioral analysis of chronic amphetamine intoxication. Biol. Psychiatry 4, 215–229 (1972)PubMedGoogle Scholar
  1025. Ellinwood, E.H. Jr., Sudilovsky, A., Nelson, L.M.: Behaviour and EEG analysis of chronic amphetamine effect. Biol. Psychiatry 8, 169–176 (1974)PubMedGoogle Scholar
  1026. Ellison, T., Siegel, M., Silverman, A.G., Okun, R.: Comparative metabolism of dl-3H-amphetamine hydrochloride in tolerant and nontolerant cats. Proc. West. Pharmacol. Soc. 11, 75–77 (1968)PubMedGoogle Scholar
  1027. Enna, S.J., Dorris, R.L., Shore, P.A.: Specific inhibition by alphamethyltyrosine of amphetamine-induced amine release from brain. J. Pharmacol. exp. Ther. 184, 576–582 (1973)PubMedGoogle Scholar
  1028. Enna, S.J., Shore, P.A.: On the nature of the adrenergic neuron extragranular amine binding site. J. neural Transm. 35, 125–135 (1974)PubMedGoogle Scholar
  1029. Epstein, A.N.: Suppression of eating and drinking by amphetamine and other drugs in normal and hyperphagic rats. J. comp. physiol. Psychol. 52, 37–45 (1959)PubMedGoogle Scholar
  1030. Ernst, A.M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berl.) 10, 316–323 (1967a)Google Scholar
  1031. Ernst, A.M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Acta physiol. pharmacol. neerl. 14, 341 (1967b)Google Scholar
  1032. Ernst, A.M.: The role of biogenic amines in the extra-pyramidal system. Acta physiol. pharmacol. neerl. 15, 141–154 (1969)PubMedGoogle Scholar
  1033. Escalante, O.D., Ellinwood, E. H. Jr.: Central nervous system cytopathological changes in cats with chronic methedrine intoxication. Brain Res. 21, 151–155 (1970)PubMedGoogle Scholar
  1034. Estler, C.-J., Amnion, H.P.T.: The influence of propranolol on the methamphetamine-induced changes of cerebral function and metabolism. J. Neurochem. 14, 799–805 (1967)Google Scholar
  1035. Estler, C.-J., Amnion, H.P.T.: Antagonistischer Einfluß von β-Sympathicolytica auf die durch Methamphetamine verursachten Änderungen von Funktion und Stoffwechsel des Gehirns. Arzneimittel-Forsch. 20, 908–909 (1970)Google Scholar
  1036. Estler, C.-J., Amnion, H.P.T.: Modification by two beta-adrenergic blocking drugs of the effects of methamphetamine on behavior and brain metabolism of mice. J. Neurochem. 18, 777–779 (1971)PubMedGoogle Scholar
  1037. Estler, C.-J., Amnion, H.P.T., Fickl, W., Fröhlich, H.-N.: Substrate supply and energy metabolism of skeletal muscle of mice treated with methamphetamine and propranolol. Biochem. Pharmacol. 19, 2957–2962 (1970)PubMedGoogle Scholar
  1038. Estler, C.-J., Mitznegg, P.: Influence of methamphetamine on incorporation of glucose into brain glycogen. Biochem. Pharmacol. 20, 1331–1333 (1971)PubMedGoogle Scholar
  1039. Etevenon, P.: Effets de la stimulation en lumière intermittente sur les aires cortico-visuelles du Lapin. Latéralisation spécifique des résponses électroencéphalographiques et ses variations après administration d’amphétamine ou de pentobarbital. C.R. Acad. Sci. (Paris) 265, 885–888 (1967)Google Scholar
  1040. Euler, U.S. von, Lishajko, F.: Effect of directly and indirectly acting sympathomimetic amines on adrenergic transmitter granules. Acta physiol. scand. 73, 78–88 (1968)Google Scholar
  1041. Evangelista, A.M., Gattoni, R.C., Izquierdo, I.: Effect of amphetamine, nicotine and hexamethonium on performance of a conditioned response during acquisition and retention trials. Pharmacology (Basel) 3, 91–96 (1970)Google Scholar
  1042. Evans, H.L.: Behavioral effects of methamphetamine and alphamethyltyrosine in the rat. J. Pharmacol. exp. Ther. 176, 244–254 (1971)PubMedGoogle Scholar
  1043. Evans, H.L., Ghiselli, W.B., Patton, R.A.: Diurnal rhythm in behavioral effects of methamphetamine, p-chloromethamphetamine and scopolamine. J. Pharmacol. exp. Ther. 186, 10–17 (1973)PubMedGoogle Scholar
  1044. Everett, G.M., Thoman, J.E.P., Smith, A.H.: Central and peripheral effects of reserpine and 11-desmethoxyreserpine (Harmonyl) on the nervous system. Fed. Proc. 16, 295 (1957)Google Scholar
  1045. Everett, G.M., Yellin, T.O.: Effect of 4-chlorophenoxyamphetamine (A-6587), d-amphetamine and 4-chloroamphetamine on brain biogenic amines and behavior in mice. Res. Commun. chem. Path. Pharmacol. 2, 407–414 (1971)Google Scholar
  1046. Evetts, K.D., Uretsky, N.J., Iversen, L.L., Iversen, S. D.: Effects of 6-hydroxydopamine on CNS catecholamines, spontaneous motor activity and amphetamine induced hyperactivity in rats. Nature (Lond.) 225, 961–962 (1970)Google Scholar
  1047. Ewing, P.L., Moore, B.M., Moore, W.T.: The effect of amphetamine and related compounds on maze performance of white rats. J. Pharmacol. exp. Ther. 105, 343–348 (1952)PubMedGoogle Scholar
  1048. Faidherbe, J., Richelle, M., Schlaug, J.: Nonconsumption of the reinforcer under drug action. J. exp. Anal. Behav. 5, 521–524 (1962)PubMedGoogle Scholar
  1049. Falb, A., Schmidt, G., Schwabe, U.: Zusammenhänge zwischen anorexigener Wirkung und Fettsäuremobilisation durch Methamphetamine. Arzneimittel-Forsch. 16, 733–735 (1966)Google Scholar
  1050. Fanelli, O.: Pharmacological and toxicological study of a new psychotropic stimulant: the 2-phenyl-5-dimethyl-tetrahydro-1, 4-oxazine, in comparison with dl-amphetamine, phenmetrazine and pemoline-Mg. Arzneimittel-Forsch. 23, 810–816 (1973)Google Scholar
  1051. Farnebo, L.-O.: On transmitter release evoked by field stimulation of monoamine neurons, pp. 1–44. Stockholm: Department of Histology, Karolinska Institutet 1971Google Scholar
  1052. Fassina, G.: Azioni di farmaci anoressanti sugli acidi liberi plasmatici. Arch. int. Pharmacodyn. 161, 410–422 (1966)PubMedGoogle Scholar
  1053. Fawas, G., Simaan, J.: The tachyphylaxis caused by mephentermine and tyramine. Brit. J. Pharmacol. 24, 526–531 (1965)Google Scholar
  1054. Feldberg, W., Lang, W.J.: Effects of monoamine oxidase inhibitors and amphetamine on hypothermia produced by halothane. Brit. J. Pharmacol. 38, 181–191 (1970)Google Scholar
  1055. Feltz, P.: La réponse cellulaire d’excitation nigro-striatale: Test pharmacologiques par perfusion de la surface du noyau caudé. J. Physiol. (Paris) 62, suppl. 3, 374–375 (1970)Google Scholar
  1056. Feltz, P., Champlain, J. de: The postsynaptic effect of amphetamine on striatal dopamine-sensitive neurones. Frontiers of catecholamine research, pp.951–956. Usdin, E., Snyder, S. (Eds.) New York: Pergamon Press 1973Google Scholar
  1057. Ferguson, J., Dement, W.: The behavioral effects of amphetamine on REM deprived rats. J. psychiat. Res. 7, 111–118 (1969)PubMedGoogle Scholar
  1058. Ferrendelli, J.A., Kinscherf, D.A., Kipnis, D.M.: Effects of amphetamine, chlorpromazine and reserpine on cyclic GMP and cyclic AMP levels in mouse cerebellum. Biochem. biophys. Res. Commun. 46, 2114–2120 (1972)PubMedGoogle Scholar
  1059. Ferris, R.M., Maxwell, R.A.: Effects of isomers of amphetamine deoxypipradrol and methylphenidate on uptake and release of H3-catecholamines in crude synaptosomal preparations of rat cortex, hypothalamus and striatum. Fed. Proc. 31, abstract 2175 (1972)Google Scholar
  1060. Ferris, R.M., Tang, F.L.M., Maxwell, R.A.: A comparison of the capacities of isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices. J. Pharmacol. exp. Ther. 181, 407–416 (1972)PubMedGoogle Scholar
  1061. Ferster, C.B., Appel, J.B., Hiss, R.A.: The effects of drugs on a fixed ratio performance suppressed by a pre time-out stimulus. J. exp. Anal. Behav. 5, 73–88 (1962)PubMedGoogle Scholar
  1062. Feudis, F.V. de: Effects of d-amphetamine on the incorporation of carbon atoms of D-mannose into the brains and sera of differently housed mice: short-term reversibility of these effects. Biol. Psychiatry 7, 3–10 (1973)Google Scholar
  1063. Feudis, F.V. de, Marks, J.H.: Studies on the time course of entry and subcellular distribution of radioactivity of (3H)-d-amphetamine in the brains of differentially housed mice. Experientia (Basel) 29, 1518–1520 (1973a)Google Scholar
  1064. Feudis, F.V. de, Marks, J.H.: Brain to serum distribution of radioactivity of injected (3H)-d-amphetamine in differentially housed mice. Biol. Psychiatry 6, 85–88 (1973b)Google Scholar
  1065. Fibiger, H.C.: Behavioural pharmacology of d-amphetamine: some metabolic and pharmacological considerations. Frontiers in catecholamine research, pp.933–937. Usdin, E., Snyder, S. (Eds.) New York: Pergamon Press 1973Google Scholar
  1066. Fibiger, H.C., Fibiger, H.P., Zis, A.P.: Attenuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat. Brit. J. Pharmacol. 47, 683–692 (1973)Google Scholar
  1067. Fibiger, H.C., McGeer, E.G.: Effect of acute and chronic methamphetamine treatment on tyrosine hydroxylase activity in brain and adrenal medulla. Europ. J. Pharmacol. 16, 176–180 (1971)Google Scholar
  1068. Fibiger, H.C., Trimbach, C., Campbell, B.A.: Enhanced stimulant properties of (+)-amphetamine after chronic reserpine treatment in the rat: mediation by hypophagia and weight loss. Neuropharmacology 11, 57–67 (1972)PubMedGoogle Scholar
  1069. Finger, K.F., Page, J.G., Feller, D.R.: Influence of various agonists and antagonists on the release of free fatty acids from adipose tissue in vitro. Biochem. Pharmacol. 15, 1023–1032 (1966)PubMedGoogle Scholar
  1070. Fischer, E., Heller, B.: Pharmacology of the mechanism of certain effects of reserpine in the rat. Nature (Lond.) 216, 1221–1222 (1967)Google Scholar
  1071. Fitz-Gerald, F.L.: Effects of d-amphetamine upon behavior of young chimpanzees reared under different conditions. Neuropharmacology 5, 1226–1227 (1967)Google Scholar
  1072. Fleckenstein, A., Burn, J.H.: The effect of denervation on the action of sympathomimetic amines on the nictitating membrane. Brit. J. Pharmacol. 8, 69–78 (1953)PubMedGoogle Scholar
  1073. Fleckenstein, A., Stöckle, D.: Zum Mechanismus der Wirkungsverstärkung und Wirkungs-Abschwächung sympathomimetischer Amine durch Cocain und andere Pharmaka. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 224, 401–415 (1955)Google Scholar
  1074. Flegin, O.T., Morgan, D.H., Oates, J. A., Shand, D.G.: The mechanism of the reversal of the effect of guanethidine by amphetamines in cat and man. Brit. J. Pharmacol. 39, 252–254 (1970)Google Scholar
  1075. Fog, R.: Stereotyped and non-stereotyped behaviour in rats induced by various stimulant drugs. Psychopharmacologia (Berl.) 14, 299–304 (1969)Google Scholar
  1076. Fog, R.: Behavioural effects in rats of morphine and amphetamine and of a combination of the two drugs. Psychopharmacologia (Berl.) 16, 305–312 (1970)Google Scholar
  1077. Fog, R.: On stereotyped and catalepsy: studies on the effect of amphetamines and neuroleptics in rats. Copenhagen: Munksgaard (Thesis) 1972Google Scholar
  1078. Fog, R., Pakkenberg, H.: Behavioral effects of dopamine and p-hydroxyamphetamine injected into corpus striatum of rats. Exp. Neurol. 31, 75–86 (1971)PubMedGoogle Scholar
  1079. Fog, R., Randrup, A., Pakkenberg, H.: Lesions in corpus striatum and cortex of rat brains and the effect on pharmacologically induced stereotyped, aggressive and cataleptic behaviour. Psychopharmacologia (Berl.) 18, 346–356 (1970)Google Scholar
  1080. Fog, R., Randrup, A., Pakkenberg, H.: Aminergic mechanisms in corpus striatum and amphetamine induced sterotyped behaviour. Psychopharmacologia (Berl.) 11, 179–193 (1967)Google Scholar
  1081. Follenfant, M.J., Robson, R.D.: The antagonism of adrenergic neurone blockade by amphetamine and dexamphetamine in the rat and guinea-pig. Brit. J. Pharmacol. 38, 792–801 (1970)Google Scholar
  1082. Foote, W.E., Sheard, M.H., Aghajanian, G.K.: LSD and amphetamine effects on midbrain raphe units. Nature (Lond.) 222, 567–569 (1969)Google Scholar
  1083. Foree, D.P., Moretz, F.H., McMillan, D.E.: Drugs and punished responding. II. d-amphetamine induced increases in punished responding. J. exp. Anal. Behav. 20, 291–300 (1973)PubMedGoogle Scholar
  1084. Fox, S.S.: Self-maintained sensory input and sensory deprivation in monkeys: A behavioural and neuropharmacological study. J. comp. physiol. Psychol. 55, 438–444 (1962)PubMedGoogle Scholar
  1085. Foxwell, M.H., Funderburk, W.H., Ward, J.W.: Studies on the state of action of a new anorexigenic agent, fenfluramine. J. Pharmacol. exp. Ther. 165, 60–70 (1969)PubMedGoogle Scholar
  1086. Frankova, S.: Effect of amphetamine and chlorpromazine on maternal behaviour of rats. Activ. nerv. sup. (Praha) 14, 166–167 (1972)Google Scholar
  1087. Freeman, J.J., Miller, K.W., Sulser, F.: On the mechanism of amphetamine potentiation by iprindole. Pharmacologist 12, 226 (1970)Google Scholar
  1088. Freeman, J.J., Sulser, F.: Iprindole-amphetamine interactions in the rat: the role of aromatic hydroxylation of amphetamine in its mode of action. J. Pharmacol. exp. Ther. 183, 307–315 (1972)PubMedGoogle Scholar
  1089. Frey, H.-H.: Note on the interactions of amphetamine with anticonvulsant drugs. Acta Pharmacol. (Kbh.) 21, 290–298 (1964)Google Scholar
  1090. Frey, H.-H.: p-Chloroamphetamine-similarities and dissimilarities to amphetamine. In: Costa, E., Garattini, S. (Eds.): International Symposium on Amphetamines and Related Compounds, pp.343–347. New York: Raven Press 1970Google Scholar
  1091. Frey, H.-H., Kampmann, E.: Interaction of amphetamine with anticonvulsant drugs. II. Effect of amphetamine on the absorption of anticonvulsant drugs. Acta pharmacol (Kbh.) 24, 310–316 (1966)Google Scholar
  1092. Frey, H.-H., Magnussen, M.P.: Different central mediation of the stimulant effects of amphetamine and its p-chloro analogue. Biochem. Pharmacol. 17, 1299–1307 (1968)PubMedGoogle Scholar
  1093. Frey, H.-H., Schulz, R.: On the central mediation of anorexigenic drug effects. Biochem. Pharmacol. 22, 3041–3049 (1973)Google Scholar
  1094. Frommel, E., Chmouliovsky, M.: De Faction antidotale de l’haloperidole envers l’amphétamine chez la souris. C.R. Soc. Biol. (Paris) 158, 48–50 (1964)Google Scholar
  1095. Fuentes, J.A., Del Rio, J.: Striatal homovanillic acid levels in rats after combined treatments with amphetamine and neuroleptics. Europ. J. Pharmacol. 17, 297–300 (1972)Google Scholar
  1096. Fujimori, M., Himwich, H.E.: Electroencephalographic alerting sites of d-amphetamine and 2, 5-dimethoxy-4-methyl-amphetamine. Nature (Lond.) 220, 491–494 (1968)Google Scholar
  1097. Fujimori, M., Himwich, H.E.: Electroencephalographic analyses of amphetamine and its methoxy derivatives with references to their sites of EEG alerting in the rabbit brain. Int. J. Neuropharmacol. 8, 601–613 (1969)PubMedGoogle Scholar
  1098. Fulginiti, S., Orsingher, O.A.: Effects of learning, amphetamine and nicotine on the level and synthesis of brain noradrenaline in rats. Arch. int. Pharmacodyn. 190, 291–298 (1971)PubMedGoogle Scholar
  1099. Fulginiti, S., Orsingher, O. A.: Further evidence in support of a common adrenergic mechanism for the facilitatory action on learning of amphetamine and nicotine in rats. J. Pharm. Pharmacol. 25, 580–581 (1973)PubMedGoogle Scholar
  1100. Fuller, R.W.: Selective inhibition of monoamineoxidase. Adv. Biochem. Psychopharmacology 5, 339–354 (1972)Google Scholar
  1101. Fuller, R.W., Hines, C.W.: d-Amphetamine levels in brain and other tissues of isolated and aggregated mice. Biochem. Pharmacol. 16, 11–16 (1967)Google Scholar
  1102. Fuller, R.W., Hines, C.W., Mills, J.: Lowering of brain serotonin level by chloramphetamines. Biochem. Pharmacol. 14, 483–488 (1965)PubMedGoogle Scholar
  1103. Fuller, R. W., Schaffer, R. J., Roush, B. W., Molloy, B.B.: Drug disposition as a factor in the lowering of brain serotonin by chloramphetamines in the rat. Biochem. Pharmacol. 21, 1413–1417 (1972b)PubMedGoogle Scholar
  1104. Fuller, R.W., Shaw, W.N., Molloy, B.B.: Dissociation of the lipid mobilizing and hyperthermic effects of amphetamine by beta-fluoro substitution. Arch. int. Pharmacodyn. 199, 266–271 (1972a)PubMedGoogle Scholar
  1105. Fuller, R.W., Walters, C.P.: Inhibition of monoamine oxidase action on kynuramine by substrate amines and stereosimeric α-methyl amines. Biochem. Pharmacol. 14, 159–163 (1964)Google Scholar
  1106. Funatogawa, S.: Methamphetamine-induced changes in behaviour of cats and in topographical distribution of brain serotonin. Psychiat. Neurol. jap. 66, 743–754 (1964)Google Scholar
  1107. Funatogawa, S.: Methamphetamine-induced changes in behaviour of the cat and in topographical distribution of brain serotonin. Excerpta med. (Amst.) Sect. II 18, Abstr. 4863 (1965)Google Scholar
  1108. Funderburk, W.H., Hazelwood, J.C., Ruckart, R.T., Ward, J.W.: Is 5-hydroxytryptamine involved in the mechanism of action of fenfluramine. J. Pharm. Pharmacol. 23, 468–470 (1971)PubMedGoogle Scholar
  1109. Fuxe, K., Hamberger, B., Malmfors, T.: The effect of drugs on accumulation of monoamines in tubero-infundibular dopamine neurons. Europ. J. Pharmacol. 1, 334–341 (1967)Google Scholar
  1110. Fuxe, K., Hökfelt, T., Ungerstedt, U.: Distribution of monoamines in the mamalian central nervous system by histochemical studies. In: Hooper, G. (Ed.): Metabolism of amines in the brain, pp. 10–22. London: McMillan 1969Google Scholar
  1111. Fuxe, K., Ungerstedt, U.: Histochemical studies on the effect of (+)-amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine. Europ. J. Pharmacol. 4, 135–144 (1968)Google Scholar
  1112. Fuxe, K., Ungerstedt, U.: Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration. In: Costa, E., Garattini, S. (Eds.): International symposium on amphetamines and related compounds, pp.257–288. New York: Raven Press 1970Google Scholar
  1113. Fuxe, K., Ungerstedt, U.: Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with dopa and dopamine receptor agonists. Med. Biol. 52, 48–54 (1974)PubMedGoogle Scholar
  1114. Galambos, E., Pfeifer, A.K., György, L., Monlár, J.: Study on the excitation induced by amphetamine, cocaine and α-methyltryptamine. Psychopharmacologia (Bed.) 11, 122–129 (1967)Google Scholar
  1115. Ganguly, D.K.: Effect of methylamphetamine on the brain 5-hydroxytryptamine content of isolated and aggregated rats. Experientia (Basel) 25, 1153–1154 (1969)Google Scholar
  1116. Gardocki, J.F., Schuler, M.E., Goldstein, L.: Reconsideration of the central nervous system. Pharmacology of amphetamine. I. Toxicity in grouped and isolated mice. Toxicol. appl. Pharmacol. 8, 550–557 (1966a)PubMedGoogle Scholar
  1117. Gardocki, J.F., Schuler, M.E., Goldstein, L.: Reconsideration of the central nervous system. Pharmacology of amphetamine. II. Influence of pharmacological agents on cumulative and total lethality in grouped and isolated mice. Toxicol. appl. Pharmacol. 9, 536–554 (1966b)Google Scholar
  1118. Garriott, J.C., King, L.J., Forney, R.B., Hughes, F.W.: Effects of some tetrahydrocannabinols on hexobarbital sleeping time and amphetamine-induced hyperactivity in mice. Life Sci. 6, 2119–2128 (1967)PubMedGoogle Scholar
  1119. Gauchy, C., Bioulac, B., Cheramy, A., Besson, M.J., Glowinski, J., Vincent, J.D.: Estimation of chronic dopamine release from the caudate nucleus of the macaca mulatta. Brain Res. 77, 257–268 (1974)PubMedGoogle Scholar
  1120. Geller, I., Seifter, J.: The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia (Berl.) 1, 482–492 (1960)Google Scholar
  1121. George, D.J., Wolf, H.H.: Dose-lethality curves for d-amphetamine in isolated and aggregated mice. Life Sci. 5, 1583–1590 (1966)PubMedGoogle Scholar
  1122. George, D.J., Wolf, H.H.: Effect of adrenal demedullation and adrenalectomy on amphetamine toxicity in isolated and aggregated mice. J. Pharm. Pharmacol. 19, 636–638 (1967)PubMedGoogle Scholar
  1123. Gerald, M.C., Riffee, W.H.: Acute and chronic effects of d- and l-amphetamine on seizure susceptibility in mice. Europ. J. Pharmacol. 21, 323–330 (1973)Google Scholar
  1124. Gerkens, J.F., McCulloch, M.W., Wilson, J.: Mechanism of the antagonism between guanethidine and dexamphetamine. Brit. J. Pharmacol. 35, 563–572 (1969)Google Scholar
  1125. German, D.C., Bowden, D.M.: Catecholamine systems as the neural substrate for intracranial selfstimulation. A Hypothesis. Brain Res. 73, 381–419 (1974)PubMedGoogle Scholar
  1126. Gessa, G.L., Clay, G.A., Brodie, B.B.: Evidence that hyperthermia produced by d-amphetamine is caused by a peripheral action of the drug. Life Sci. 8, 135–141 (1969)PubMedGoogle Scholar
  1127. Geyer, M.A., Segal, D.S.: Differential effects of reserpine and alpha-methyl-p-tyrosine on norepinephrine and dopamine induced behavioural activity. Psychopharmacologia (Berl.) 29, 131–140 (1973)Google Scholar
  1128. Ghosh, M.N., Parvathy, S.: Tolerance pattern of the anorexigenic action of amphetamine in rats. Brit. J. Pharmacol. 49, 658–661 (1973)Google Scholar
  1129. Glick, S.D.: Effects of d-amphetamine and frontal ablations on response suppression in rats. J. comp. physiol. Psychol. 69, 49–54 (1969)PubMedGoogle Scholar
  1130. Glick, S.D.: Change in sensitivity to d-amphetamine in frontal rats as a function of time: shifting of the dose-response curve. Psychon. Sci. 19, 57–58 (1970)Google Scholar
  1131. Glick, S.D.: Differential sensitivity of frontal rats to d-amphetamine and scopolamine. Commun. behav. Biol. 5, 341–346 (1971a)PubMedGoogle Scholar
  1132. Glick, S.D.: Facilitation or impairment of learning by d-amphetamine as a function of stimuli. Psychopharmacologia (Berl.) 21, 353–360 (1971b)Google Scholar
  1133. Glick, S.D.: Changes in amphetamine sensitivity following frontal cortical damage in rats and mice. Europ. J. Pharmacol. 20, 351–356 (1972)Google Scholar
  1134. Glick, S.D.: Impaired tolerance to the effects of oral amphetamine intake in rats with frontal cortex ablations. Psychopharmacologia (Berl.) 28, 363–371 (1973a)Google Scholar
  1135. Glick, S.D.: Enhancement of spatial preferences by (+)-amphetamine. Neuropharmacology 12, 43–47 (1973b)PubMedGoogle Scholar
  1136. Glick, S.D., Greenstein, S.: Possible modulating influence of frontal cortex on nigro-striatal function. Brit. J. Pharmacol. 49, 316–321 (1973)Google Scholar
  1137. Glick, S.D., Jarvik, M. E.: Amphetamine, scopolamine and chlorpromazine interactions on delayed matching performance in monkeys. Psychopharmacologia (Berl.) 16, 147–155 (1969)Google Scholar
  1138. Glick, S.D., Jerussi, T.P.: Spatial and paw preferences in rats: their relationship to rate-dependent effects of d-amphetamine. J. Pharmacol. exp. Ther. 188, 714–725 (1974)PubMedGoogle Scholar
  1139. Glick, S.D., Jerussi, T.P., Waters, D.H., Green, J.P.: Amphetamine induced changes in striatal dopamine and acetylcholine levels and relationship to rotation (circling behaviour) in rats. Biochem. Pharmacol. 23, 3223–3225 (1974)PubMedGoogle Scholar
  1140. Glick, S.D., Marsanico, R.G.: Comparative time-dependent changes in sensitivity to locomotor effects of d-amphetamine in mice with caudate, hippocampal or frontal cortical lesions. Arch. int. Pharmacodyn. 209, 80–85 (1974a)PubMedGoogle Scholar
  1141. Glick, S.D., Marsanico, R.G.: Shifting of d-amphetamine dose-response curve in rats with frontal cortical ablations. Psychopharmacologia (Berl.) 36, 109–115 (1974b)Google Scholar
  1142. Glick, S.D., Muller, R.U.: Paradoxical effects of low doses of d-amphetamine in rats. Psychopharmacologia (Berl.) 22, 396–402 (1971)Google Scholar
  1143. Glick, S.D., Nakamura, R.K., Jarvik, M.E.: Recovery of function following frontal brain damage in mice. J. comp. physiol. Psychol. 76, 454–459 (1971)PubMedGoogle Scholar
  1144. Glick, S.D., Waters, D.H., Milloy, S.: Depletion of hypothalamic norepinephrine by food deprivation and interaction with d-amphetamine. Res. Commun. chem. Path. Pharmacol. 6, 775–778 (1973)Google Scholar
  1145. Glowinski, J.: Effects of amphetamine on various aspects of catecholamine metabolism in the central nervous system of the rat. In: Costa, E., Garattini, S. (Eds.): International symposium on amphetamines and related compounds, pp.301–316. New York: Raven Press 1970aGoogle Scholar
  1146. Glowinski, J.: Release of monoamines in the central nervous system. Bayer Symposium II. New aspects of storage and release mechanism of catecholamines, pp.237–247. Schüman, H.J., Kroneberg, G. (Eds.) Berlin-Heidelberg-New York: Springer 1970bGoogle Scholar
  1147. Glowinski, J., Axelrod, J.: Inhibition of uptake of tritiated noradrenaline in the intact rat brain by imipramine and structually related compounds. Nature (Lond.) 204, 1318–1319 (1964)Google Scholar
  1148. Glowinski, J., Axelrod, J.: Effect of drugs on the uptake, release and metabolism of H3-norepinephrine in the rat brain. J. Pharmacol. exp. Ther. 149, 43–49 (1965)PubMedGoogle Scholar
  1149. Glowinski, J., Axelrod, J., Iversen, L.: Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine. J. Pharmacol. exp. Ther. 153, 30–41 (1966a)PubMedGoogle Scholar
  1150. Glowinski, J., Baldessarini, R.J.: Metabolism of norepinephrine in the central nervous system. Pharmacol. Rev. 18, 1201–1238 (1966)PubMedGoogle Scholar
  1151. Glowinski, J., Iversen, L., Axelrod, J.: Storage and synthesis of norepinephrine in the reserpinetreated rat brain. J. Pharmacol. exp. Ther. 151, 385–399 (1966b)PubMedGoogle Scholar
  1152. Gluckman, M.I., Baum, T.: The pharmacology of iprindole, a new antidepressant. Psychopharmacologia (Berl.) 15, 169–185 (1969)Google Scholar
  1153. Goetz, G., Klawans, H.L.: Studies on the interaction of reserpine, d-amphetamine, apomorphine and 5-hydroxytryptophan. Acta pharmacol (Kbh.) 34, 119–130 (1974)Google Scholar
  1154. Gogoläk, G., Liebeswar, G., Sumpf, Ch.: Differential action of eserine and methamphetamine on the limbic system. Arch. int. Pharmacodyn. 178, 77–84 (1969)PubMedGoogle Scholar
  1155. Gokhale, S.D., Gulati, O.D., Udwadia, B.P.: Antagonism of the adrenergic neurone blocking action of guanethidine by certain antidepressant and antihistamine drugs. Arch. int. Pharmacodyn. 160, 321–329 (1966)PubMedGoogle Scholar
  1156. Gold, D., Reinert, H.: The depolarizing and blocking action of some sympathomimetic amines in the cat’s superior cervical ganglion. J. Physiol. (Lond.) 151, 3–4 (1960)Google Scholar
  1157. Goldberg, M.E., Ciofalo, V.B.: Alteration of the behavioral effects of amphetamine by agents which modify cholinergic function. Psychopharmacologia (Berl.) 14, 142–149 (1969)Google Scholar
  1158. Goldberg, M.E., Salama, A.I.: Amphetamine toxicity and brain monoamines in three models of stress. Toxicol. appl. Pharmacol. 14, 447–456 (1969)PubMedGoogle Scholar
  1159. Goldberg, S.R.: Comparable behavior maintained under fixed ratio and second-order schedules of food presentation, cocaine injection or l-amphetamine injection in the squirrel monkey. J. Pharmacol. exp. Ther. 186, 18–30 (1973)PubMedGoogle Scholar
  1160. Goldstein, L., Gardocki, J.F., Mundschenk, D.C., O’Brien, G.: The effect of psychotropic drugs on the occurrence of paradoxical sleep in rats and cats. Fed. Proc. 26, 506 (1967)Google Scholar
  1161. Goldstein, M., Anagnoste, B.: The conversion in vivo of d-amphetamine to (+)-p-hydroxynor-ephedrine. Biochim. biophys. Acta (Amst.) 107, 166–168 (1965)Google Scholar
  1162. Goldstein, M., McKereghan, M.R., Lauber, E.: The stereospecificity of the enzymatic amphetamine β-hydroxylation. Biochim. biophys. Acta (Amst.) 89, 191–193 (1964)Google Scholar
  1163. Gollub, L.R., Brady, J.V.: Behavioural pharmacology. Ann. Rev. Pharmacol. 5, 235–262 (1965)Google Scholar
  1164. Gollub, L.R., Mann, W.G. Jr.: The interaction of amphetamine and body weight on a foodreinforced operant. Psychopharmacologia (Berl.) 15, 64–72 (1969)Google Scholar
  1165. Gomer, F. E., Jakubczak, L.F.: Dose-dependent selective facilitation of response-contingent lightonset behavior by d-amphetamine. Psychopharmacologia (Berl.) 34, 199–208 (1974)Google Scholar
  1166. Gonzalez-Barón, S., Jiménez-Vargas, J., Lopez, G.G.: Cambios en el ciclo ovárico por anfetamina y reserpina. Rev. Med. Univ. Navarra 15, 251–259 (1971)PubMedGoogle Scholar
  1167. Görlitz, B.-D., Frey, H.-H.: Central monoamines and antinociceptive drug action. Europ. J. Pharmacol. 20, 171–180 (1972)Google Scholar
  1168. Graham, A.W., Aghajanian, G.K.: Amphetamine—effects on single cell activity in a catecholamine nucleus, the locus coeruleus. Nature (Lond.) 234, 100 (1971)Google Scholar
  1169. Graham, J.M., Schreiber, R.A., Zemp, J.W.: Effect of d-amphetamine sulphate on susceptibility to audiogenic seizures in DBA-2 J mice. Behav. Biol. 10, 183–190 (1974)Google Scholar
  1170. Grana, E., Lilla, L.: The inhibition of amine oxidase and the central stimulating action of the stereoisomeric amphetamines and l-phenylethylamines. Brit. J. Pharmacol. 14, 501–504 (1959)PubMedGoogle Scholar
  1171. Grana, E., Sossi, D.: Ricerche sull’attivita’ centrale di composti ad attivita’ β-simpatolitica. Farmaco, Ed. Sci. 22, 582–589 (1967)Google Scholar
  1172. Green, A.L.: Inhibition of rat and mouse brain monoamine oxidase by (+)-amphetamine. Biochem. J. 121, 37 (1971)Google Scholar
  1173. Green, T., Harvey, J.A.: Enhancement of amphetamine action after interruption of ascending serotonergic pathways. J. Pharmacol. exp. Ther. 190, 109–117 (1974)PubMedGoogle Scholar
  1174. Greenblatt, E.N., Osterberg, A.C.: Correlations of activating and lethal effects of excitatory drugs in grouped and isolated mice. J. Pharmacol. exp. Ther. 131, 115–119 (1961)PubMedGoogle Scholar
  1175. Greengard, P., Kebabian, J.W.: Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed. Proc. 33, 1059–1067 (1974)PubMedGoogle Scholar
  1176. Griffiths, D., Wahlsten, D.: Interacting effects of handling and d-amphetamine on avoidance learning. Pharmacol. Biochem. Behav. 2, 439–441 (1974)PubMedGoogle Scholar
  1177. Groppetti, A., Costa, E.: d-Amphetamine (A): metabolites and depletion of brain and heart norepinephrine (NE) in guinea pig and rat. Fed. Proc. 28, 795 (1969a)Google Scholar
  1178. Groppetti, A., Costa, E.: Tissue concentrations of p-hydroxynorephedrine in rats injected with d-amphetamine: effect of pretreatment with desipramine. Life Sci. 8, 653–665 (1969b)PubMedGoogle Scholar
  1179. Groppetti, A., Misher, A., Naimzada, M., Revuelta, A., Costa, E.: Evidence that in rat 1-benzyl- β-methoxy-3-trifluormethyl-phenethylamine (SK&F 1–39728) dissociates anorexia from central stimulation and action on brain monoamines stores. J. Pharmacol. exp. Ther. 182, 464–473 (1972a)PubMedGoogle Scholar
  1180. Groppetti, A., Zambotti, F., Mantegazza, P.: Effect of acute and chronic d-amphetamine treatment on behaviour and on brain biogenic amines in guinea-pigs. Psychopharmacologia (Berl.) 26, Suppl. 35(1972b)Google Scholar
  1181. Grossman, S.P., Sclafani, A.: Sympathomimetic amines. In: Furchgott, E. (Ed.): Pharmacological and biophysical agents and behaviour, pp.269–344. London-New York: Academic Press 1971Google Scholar
  1182. Groves, P.M., Rebec, G.V., Segal, D.S.: The action of d-amphetamine on spontaneous activity in the caudate nucleus and reticular formation of the rat. Behav. Biol. 11, 33–47 (1974)PubMedGoogle Scholar
  1183. Gudetsky, G.A., McCall, R.B., Chiueh, C.C., Moore, K.E.: Lack of effect of amantadine on d-amphetamine induced release of dopamine from cat brain in vivo. Res. Commun. chem. Path. Pharmacol. 9, 653–660 (1974)Google Scholar
  1184. Guilleux, H., Peterfalvi, M.: Le comportement de rotation après lésion unilatérale du striatum analysé à l’aide d’un rotomètre. J. Pharmacol. (Paris) 5, 63–74 (1974)Google Scholar
  1185. Gunn, J.A., Gurd, M.R.: The action of some amines related to adrenaline. Cyclohexylalkylamines. J. Physiol. (Lond.) 97, 453–470 (1940)Google Scholar
  1186. Gunn, J.A., Gurd, M.R., Sachs, I.: The action of some amines related to adrenaline: methoxy-phenylisopropylamines. J. Physiol. (Lond.) 95, 485–500 (1939)Google Scholar
  1187. Gunne, L.-M., Lewander, T.: Long-term effects of some dependence-producing drug on the brain monoamines. Molecular basis of some aspects of mental activity, Vol.2, pp.75–81. London-New York: Academic Press 1967Google Scholar
  1188. Gunne, L.-M., Lewander, T.: Brain catecholamines during chronic amphetamine intoxication. The Addictive States, Vol.XLVI, pp.106–116. Baltimore: Williams and Wilkins Company 1968Google Scholar
  1189. Gupta, B.D., Dandiya, P.C., Gupta, M.L., Gabba, A.K.: An examination of the effect of central nervous system stimulant and antidepressant drugs on open field performance in rats. Europ. J. Pharmacol. 13, 341–346 (1971)Google Scholar
  1190. Gupta, B.D., Holland, H.C.: An examination of the effects of stimulant and depressant drugs on escape/avoidance conditioning in strains of rat selectively bred for emotionality/nonemotionality intertriai activity. Int. J. Neuropharmacol. 8, 227–234 (1969)PubMedGoogle Scholar
  1191. Gupta, B.D., Holland, H.C.: An examination of the effects of stimulant and depressant drugs on escape/avoidance conditioning in strains of rats selectively bred for emontionality/nonemotionality: a multivariate analysis of the effects of drugs on conditioned avoidance responses and intertriai activity. Neuropharmacology 11, 23–30 (1972a)PubMedGoogle Scholar
  1192. Gupta, B.D., Holland, H.C.: Emotion as a determinant of the effects of drugs and their combination on different components of behaviour in rats. Neuropharmacology 11, 31–38 (1972b)PubMedGoogle Scholar
  1193. Haas, H.T.A.: Ascorbinsäure und Fieber. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 192, 331–350 (1939)Google Scholar
  1194. Haefely, W., Jalfre, M., Monachon, M.-A.: NE-neurons and phasic sleep phenomena. Frontiers in catecholamine research, pp.773–775. Usdin, E., Snyder, S. (Eds.). New York: Pergamon Press 1973Google Scholar
  1195. Haffner, F.: Zur Pharmakologie und Praxis der Stimulantien. Klin. Wschr. 17, 1310–1311 (1938)Google Scholar
  1196. Häggendal, J., Hamberger, B.: Quantitative in vitro studies on noradrenaline uptake and its inhibition by amphetamine, desipramine and chlorpromazine. Acta physiol. scand. 70, 277–280 (1967)PubMedGoogle Scholar
  1197. Hajos, G.J.T., Garattini, S.: A note on the effect of (+) and (-)-amphetamine on lipid metabolism. J. Pharm. Pharmacol. 25, 418–419 (1973)PubMedGoogle Scholar
  1198. Halliwell, G., Quinton, R.H., Williams, F.E.: A comparison of imipramine, chlorpromazine and related drugs in various tests involving antonomic functions and antagonism of reserpine. Brit. J. Pharmacol. 23, 330–350 (1964)PubMedGoogle Scholar
  1199. Halpern, B.N., Drudi-Baracco, C., Bessirard, D.: Toxicité de groupe par l’amphétamine et action de la reserpine, de la chlorpromazine et des inhibiteurs de la monoamineoxydase. C.R. Soc. Biol. (Paris) 156, 769–773 (1962a)Google Scholar
  1200. Halpern, B.N., Drudi-Baracco, C., Bessirard, D.: Mise en évidence de la “toxicité de groupe” de certains inhibiteurs de la monoamineoxydase. Comparaison de leur mode d’action avec celui de l’amphétamine. C.R. Soc. Biol. (Paris) 156, 1238–1245 (1962b)Google Scholar
  1201. Halpern, B.N., Morard, J.C., Drudi-Baracco, C.: Action protectrice de la reserpine sur les lésions de dégénérescence myocardique aigue provoquées par la dl-amphétamine et suppression de cette action par les inhibiteurs de la monoamineoxydase. C.R. Soc. Biol. (Paris) 156, 773–779 (1962c)Google Scholar
  1202. Hamberger, B., Malmfors, T.: Uptake and release of alphamethyl-noradrenaline in vitro after reserpine treatment. A histochemical study. Acta physiol. scand. 70, 412–418 (1967)PubMedGoogle Scholar
  1203. Handley, C.A., Sweeney, H.M.: The relation of central nervous system depression and stimulation to biochemical changes occurring in cerebral blood. Amer. J. Physiol. 133, 314 (1941)Google Scholar
  1204. Hanna, C.: Tachyphylaxis V. Actions of optical isomers of sympathomimetic amines on rabbit aortic strips. Arch. int. Pharmacodyn. 129, 191–200 (1960)PubMedGoogle Scholar
  1205. Hanna, C., Upton, P.D., Chambers, W.F.: Comparative effects of d-, l-amphetamine and l-phenyl-I-(Piperidyl-2′-)-I-acetoxy-I-methane (R.P.-8228) in antagonizing barbiturate hypnosis. Arch. int. Pharmacodyn. 145, 553–564 (1963)PubMedGoogle Scholar
  1206. Hanson, H.M., Witoslawski, J.J., Campbell, E.H.: Drug effects in squirrel monkeys trained on a multiple schedule with a punishment contingency. J. exp. Anal. Behav. 10, 565–569 (1967)PubMedGoogle Scholar
  1207. Hanson, L.C.F.: Evidence that the central action of amphetamine is mediated via catecholamines. Psychopharmacologia (Berl.) 9, 78–80 (1966)Google Scholar
  1208. Hanson, L.C.F.: Evidence that the central action of (+)-amphetamine is mediated via catecholamines. Psychopharmacologia (Berl.) 10, 289–297 (1967)Google Scholar
  1209. Harris, J.E., Baldessarini, R.J.: Uptake of (3H)-catecholamines by homogenates of rat corpus striatum and cerebral cortex: effect of amphetamine analogues. Neuropharmacology 12, 669–679 (1973a)PubMedGoogle Scholar
  1210. Harris, J.E., Baldessarini, R.J.: Amphetamine-induced inhibition of tyrosine-hydroxylation in homogenates of rat corpus striatum. J. Pharm. Pharmacol. 25, 755–757 (1973b)PubMedGoogle Scholar
  1211. Harris, R.T., Balster, R.L.: An analysis of the function of drugs in the stimulus control of operant behaviour. In: Thompson, T., Pickens, R. (Eds.): Stimulus properties of drugs, pp.111–132. New York: Appleton Century Crofts 1971Google Scholar
  1212. Harris, S.C., Ivy, A.C., Searle, L.M.: The mechanism of amphetamine-induced loss of weight; a consideration of the theory of hunger and appetite. J. Amer. med. Ass. 134, 1468–1475 (1947)Google Scholar
  1213. Harrison, D.G, Chidsey, C.A., Braunwald, E.: The potentiation of the cardiovascular responses to sympathomimetic amines by reserpine. J. Pharmacol. exp. Ther. 141, 22–29 (1963)PubMedGoogle Scholar
  1214. Harrison, J.M., Abelson, R.M.: The maintenance of behaviour by the termination and onset of intense noise. J. exp. Anal. Behav. 2, 23–42 (1959)PubMedGoogle Scholar
  1215. Harrisson, J.W.E., Ambrus, C.M., Ambrus, J.L.: Tolerance of rats towards amphetamine and methamphetamine. J. Amer. pharm. Ass. XLI, 539–541 (1952)Google Scholar
  1216. Hart, M., Dienske, H., Udo de Haes, H.A., Noach, E.L.: Ethological investigation of the effect of some psychopharmacological drugs on the behaviour of rats. Acta physiol. pharmacol. neerl. 15, 403 (1969)Google Scholar
  1217. Hartung, W.H., Munch, J.C.: Amino alcohols. VI. The preparation and pharmacodynamic activity of four isomeric phenylpropylamines. J. Amer. chem. Soc. 53, 1875–1879 (1931)Google Scholar
  1218. Harvey, S.C., Sulkowski, T.S., Weenig, D.J.: Effect of amphetamines on plasma catecholamines. Arch. int. Pharmacodyn. 172, 301–322 (1968)PubMedGoogle Scholar
  1219. Hasselager, E., Rolinski, Z., Randrup, A.: Specific antagonism by dopamine inhibitors of items of amphetamine induced aggressive behaviour. Psychopharmacologia (Berl.) 24, 485–495 (1972)Google Scholar
  1220. Hatch, R.C.: Experiments on antagonism of barbiturate anaesthesia with adrenergic serotonergic and cholinergic stimulants given alone and in combination. Amer. J. vet. Res. 34, 1321–1331 (1973)PubMedGoogle Scholar
  1221. Hauschild, F.: Zur Pharmakologie des 1-phenyl-2-methylaminopropane (Pervitin). Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 191, 465–481 (1938)Google Scholar
  1222. Hawke, D.M., Chesher, G.B.: The effect of amphetamine and tyramine on the guinea-pig urinary bladder. Agents Actions 1/4, 164–171 (1970)PubMedGoogle Scholar
  1223. Hearst, E.: Effects of d-amphetamine on behavior reinforced by food and water. Psychol. Rep. 8, 301–309 (1961)Google Scholar
  1224. Hearst, E., Vane, J.R.: Some effects of d-amphetamine on the behaviour of pigeons under intermittent reinforcement. Psychopharmacologia (Berl.) 12, 58–67 (1967)Google Scholar
  1225. Hearst, E., Whalen, R.E.: Facilitating effects of d-amphetamine on discriminated-avoidance performance. J. comp. physiol. Psychol. 56, 124–128 (1963)Google Scholar
  1226. Heffner, T.G., Drawbaugh, R.B., Zigmond, M.J.: Amphetamine and operant behaviour in rats: Relationship between drug effect and control response rate. J. comp. physiol. Psychol. 86, 1031–1043 (1974)PubMedGoogle Scholar
  1227. Heim, F., Leuschner, F., Estler, K.J.: Beziehungen zwischen Funktionen und Stoffwechsel des Zentralnervensystems nach Pervitin. Experientia (Basel) 13, 462–464 (1957)Google Scholar
  1228. Heimstra, N.W.: Effects of amphetamine sulfate (benzedrine) on the behavior of paired rats in a competitive situation. Psychol. Rec. 12, 25–34 (1962a)Google Scholar
  1229. Heimstra, N.W.: Social influence on the response to drugs. I. Amphetamine sulfate. J. Psychol. 53, 233–244 (1962b)Google Scholar
  1230. Heimstra, N.W., McDonald, A.: Social influence on the response to drugs. III. Response to amphetamine sulfate as a function of age. Psychopharmacologia (Berl.) 3, 212–218 (1962)Google Scholar
  1231. Heise, G.A., Boff, E.: Stimulant action of d-amphetamine in relation to test compartment dimensions and behavioural measure. Neuropharmacology 10, 259–266 (1971)PubMedGoogle Scholar
  1232. Heise, G.A., Lilie, N.L.: Effects of scopolamine, atropine and d-amphetamine on internal and external control of responding on nonreinforced trials. Psychopharmacologia (Berl.) 18, 38–49 (1970)Google Scholar
  1233. Hemsworth, B.A., Neal, M.J.: The effect of stimulant drugs on the release of acetylcholine from the cerebral cortex. Brit. J. Pharmacol. 32, 416–417 (1968a)Google Scholar
  1234. Hemsworth, B.A., Neal, M.J.: The effect of central stimulant drugs on acetylcholine release from rat cerebral cortex. Brit. J. Pharmacol. 34, 543–550 (1968b)