Membrane Phenotyping: Diagnosis, Monitoring and Classification of Acute ‘Lymphoid’ Leukaemias

  • M. F. Greaves
  • G. Janossy
  • M. Roberts
  • N. T. Rapson
  • R. B. Ellis
  • J. Chessels
  • T. A. Lister
  • D. Catovsky
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 20)

Abstract

Many attempts have been made to produce human leukaemia specific antibodies in animal species (reviewed in 23, 17). As with other human malignancies, it has been generally assumed that malignant cells are likely to express unique antigens on their surface membrane. There is abundant evidence that transformed or neoplastic cells do indeed differ by multiple criteria from their presumed “normal” counterparts. However, when the appropriate controls are performed it is almost invariably found that the supposed tumour cell characteristic is in fact expressed by some normal cells at a particular stage of development or during a restricted phase of the cell cycle. This is true for “new” membrane antigens as well as “missing” membrane structures (e.g. the LETS protein, 31), general membrane properties (e.g. fluidity, clustering of lectin binding of glycoproteins), social (or anti-social) behaviour in vitro. Although expression of “foetal” type antigens may be a common occurrance in malignancy (9) it is becoming apparent that there is no general phenotypic manifestation of malignancy in individual cells which can provide an unequivocal diagnostic identification. In individual types of tumours or malignancies the best “markers” for malignancy or transformation may be major chromosomal alterations (e.g. Ph1 translocation in CML, 40, see also Hellriegel et al in this volume) or membrane antigens in the case of chemical carcinogen induced tumours in rodents (1) and TL (thymus-leukaemia) positive thymic leukaemias in TL- mouse strains (4).

Keywords

Carbohydrate Lymphoma Argon Leukemia Sarcoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, R.W. and Barker, C.R.: Tumour specific antigenicity of amino a20-dye induced rat hepatomas. Int. J. Cancer 2, 355, 1967.PubMedCrossRefGoogle Scholar
  2. 2.
    Billing, R., Rafizadeh, B., Dres, I., Hartman, G., Gale, R. and Terasaki, P.: Human B lymphocyte antigens expressed by lymphocytic and myelocytic leukaemia cells. 1. Detection by rabbit antisera. J. exp. Med. 144, 167 1976.PubMedCrossRefGoogle Scholar
  3. 3.
    Borella, L., Sen, L. and Casper, J.T.: Antigenic heterogeneity of acute lymphoblastic leukaemia. J. Immunol, (in press).Google Scholar
  4. 4.
    Boyse, E. A and Old, L.: Some aspects of normal and abnormal cell surface genetics. Ann. Rev. Genetics 3, 276, 1969.Google Scholar
  5. 5.
    Brouet, J.-C, Valensi, F., Daniel, M.-T., Flandrin, G., Preud’homme, J.-L. and Seligmann, M.: Immunological classification of acute lymphoblastic leukaemias: evaluation of its clinical significance in a hundred patients. Brit. J. Haematol. 33, 319, 1976.CrossRefGoogle Scholar
  6. 6.
    Brown, G., Capellaro, D. and Greaves, M.F.: Leukaemia associated antigens in man. J. Natl. Cancer Inst. 55, 1281, 1975.PubMedGoogle Scholar
  7. 7.
    Brown, G., Greaves, M.F., Lister, T.A., Rapson, N. and Papamichael, M.: Expression of T and B lymphocyte cell surface markers on leukaemic cells. Lancet 2, 273, 1974.Google Scholar
  8. 8.
    Brown, G., Hogg, N. and Greaves, M.F.: A candidate human leukaemia antigen. Nature 258, 454, 1975.PubMedCrossRefGoogle Scholar
  9. 9.
    Cancer and Chemistry Symposium Proceedings. In: Cancer Res. 36, 3384, 1976.Google Scholar
  10. 10.
    Catovsky, D., Galetto, J., Okos, T., Milcani, E., Galton, D.A.G.: Cytochemical profile of B and T leukaemic lymphocytes with special reference to acute lymphoblastic leukaemia. Jol. clin. Path. 27, 767, 1974.CrossRefGoogle Scholar
  11. 11.
    Coleman, M.S., Hutton, J.J., Simone, P.D. and Bollum, F.J.: Terminal deoxyribo-nucleotidyl transferase in human leukaemia. Proc. natl. Acad. Sci. USA 71, 4404, 1974.PubMedCrossRefGoogle Scholar
  12. 12.
    Ellis, R.B., Ikonne, J.U. and Masson, P.K.: DEAE-cellulose microcolumn chromatography coupled with automated assay: application to the resolution of N-acetyl-ß-D-Hexosaminidase components. Anal. Biochem. 63, 5, 1975.PubMedCrossRefGoogle Scholar
  13. 13.
    Ellis, R.B. and Patrick, A.D.: Components of acid hydrolases in subcellular granules from human leukocytes. In: “Current trends in sphingolipidoses and allied diseases”. (Ed. B.W. Volk and L. Schneck). p. 49, Plenum Press, N.Y. 1976.Google Scholar
  14. 14.
    Ellis, R., Rapson, N. and Greaves, M.F.: Hexosaminidase isoenzyme activity in human leukaemia, submitted for publication.Google Scholar
  15. 15.
    Esbar, E.C., Buell, D.N. and Leikin, S.L.: Insulin binding of acute lymphocytic leukaemia cells. Blood 48, 33, 1976.Google Scholar
  16. 16.
    Fu, S.M., Winchester, R.J. and Kunkel, H.G.: The occurance of the HL-B alloan-tigens of the cells of unclassified acute lymphoblastic leukaemias. J. exp. Med. 142, 1334, 1975.PubMedCrossRefGoogle Scholar
  17. 16a.
    Gallo, R.C.: Terminal transferase and leukaemia. N. Engl. J. Med. 292, 804, 1975.PubMedCrossRefGoogle Scholar
  18. 17.
    Greaves, M.F.: Clinical applications of cell surface markers. Progr. Haematol. 9, 255, 1975.Google Scholar
  19. 18.
    Greaves, M.F., Brown, G., Lister, T.A. and Rapson, N.: Antisera to acute lymphoblastic leukaemia cells. Clin. Immunol. Immunopath. 4, 67, 1975.CrossRefGoogle Scholar
  20. 19.
    Greaves, M.F., Capellaro, D., Brown, G., Revesz, T., Janossy, G. and Catovsky, D.: Analysis of human leukaemic cells using cell surface binding probes and the fluourescence activated cell sorter. In: “Modern Trends in Human Leukaemia”. (Ed. R. Neth). Grune and Stratton, N.Y. (in press).Google Scholar
  21. 20.
    Greaves, M.F., de Cicco, D. and Janossy, G.: Membrane phenotypes of human leukaemic cells. In: “Proc. of 16th Int. Congress of Haematol.”, North Holland Publishing Co, Amsterdam, in press.Google Scholar
  22. 21.
    Greaves, M.F. and Janossy, G.: Antisera to human T lymphocytes. In “Methods in Cell Mediated Immunity 2nd Edition”. (Ed. B. Bloom and J. David). Academic Press, N.Y., 1976.Google Scholar
  23. 22.
    Greaves, M.F., Roberts, M., Janossy, G. and Pain, C: Membrane antigens and the immunodiagnosis of human leukaemia. In: “Proc. of 16th Int. Congress of Haematol.”, North Holland Publishing Co., Amsterdam, in press.Google Scholar
  24. 23.
    Harries, R.: Leukaemia antigens and immunity in man. Nature 241, 95, 1973.CrossRefGoogle Scholar
  25. 24.
    Herzenberg, L.A., Sweet, R.G. and Herzenberg, L.A.: Fluorescence Activated Cell Sorting. Sci. Amer. p. 108, 1976.Google Scholar
  26. 25.
    Janossy, G., Greaves, M.F., Revesz, T., Lister, T.A., Roberts, M., Durrant, J., Kirk, B., Catovsky, D. and Beard, M.E.J.: Blast crisis of chronic myeloid leukaemia. II. Cell surface marker analysis of lymphoid and myeloid cases. Brit. J. Haematol. 34, 179, 1976.CrossRefGoogle Scholar
  27. 26.
    Janossy, G., Greaves, M.F., Sutherland, D., Durrant, J. and Lewis, C: Membrane phenotypes of acute lymphoid and undifferentiated leukaemias: relationship to target cells and differentiation pathways. Leuk. Res. 1, in press.Google Scholar
  28. 27.
    Janossy, G., Kulenkampff, J., Goldstone, A., Capellaro, D. and Greaves, M.F.: Quantitative analysis of p23, 30 (la-like) antigen on leukaemias and normal bone marrow cells, in preparation.Google Scholar
  29. 28.
    Janossy, G., Roberts, M. and Greaves, M.F.: Target cell in chronic myeloid leukaemia and its relationship to acute lymphoblastic leukaemia. Lancet, in press.Google Scholar
  30. 29.
    Jondal, J., Holm, G. and Wigzell, H.: Surface markers on human T and B lymphocytes. I. Large population of lymphocytes forming non-immune rosettes with sheep red blood cells. J. exp. Med. 136, 207, 1972.PubMedCrossRefGoogle Scholar
  31. 30.
    Kersey, J., Nesbit, M., Hallgren, H., Sabad, A., Yunis, E. and Gajl-Peczalka, K.: Evidence for origin of certain childhood acute lymphoblastic leukaemias and lymphomas in thymusderived lymphocytes. Cancer 36, 1348, 1975.PubMedCrossRefGoogle Scholar
  32. 31.
    Kolata, G.B.: Cell surface protein: no simple cancer mechanisms. Science 190, 39, 1975.Google Scholar
  33. 32.
    Kulenkampff, J., Janossy, G. and Greaves, M.F.: Acid esterase in human lymphoid cells and leukaemic blasts: a marker for peripheral T lymphocytes. Brit. J. Haematol., in press.Google Scholar
  34. 33.
    Loken, M. and Herzenberg, L.A.: Analysis of cell populations with a fluorescence — activated cell sorter. Ann. New York Academy, Science 254, 163, 1975.CrossRefGoogle Scholar
  35. 34.
    McCaffrey, R., Harrison, T.A., Parkman, R. and Baltimore, D.: Terminal deoxynucleotidyl transferase activity in human leukaemic cells and in normal human thymocytes. New Engl. J. Med. 292, 775, 1975.PubMedCrossRefGoogle Scholar
  36. 35.
    Metzgar, R.S., Mohanakumar, T. and Bolognesi, D.P.: Relationships between membrane antigens of human leukaemic cells and oncogenic RNA virus structural components. J. exp. Med. 143, 47, 1976.PubMedCrossRefGoogle Scholar
  37. 36.
    Mills, B., Sen, L. and Borella, L.: Reactivity of antihuman thymocyte serum with acute leukaemic blasts. J. Immunol. 115, 1038, 1975.PubMedGoogle Scholar
  38. 37.
    Minowada, J., Tsubota, T., Nakazawa, S., Srivastava, B.I.S., Huang, C.C., Oshimura, M., Sonta, S., Han, T., Sinks, L.F. and Sandberg, A.A.: Establishment and characterization of leukemic T-cell lines, B-cell lines and null-cell line: a progress report on surface antigen study of fresh lymphatic leukemias in man. This issue.Google Scholar
  39. 38.
    Mohanakumar, T. and Metzgar, R.S.: Human-thymus-leukaemia related anti-gen(s): detection by a non-human primate antiserum. Coll. Immunol. 12, 30, 1974.CrossRefGoogle Scholar
  40. 39.
    Mohanakumar, T., Metzgar, R.S. and Miller, D.S.: Human leukaemia cell antigens: serological characterisation with xenoantisera. J. natl. Cancer Inst. 52, 1435, 1975.Google Scholar
  41. 40.
    Sandberg, A.A. and Hossfield, P.K.: Chromosomal abnormalities in human neoplasia. Ann. Rev. Med. 21, 379, 1970.PubMedCrossRefGoogle Scholar
  42. 41.
    Silverstone, A.E., Cantor, H., Goldstein, G. and Baltimore, D.: Terminal deoxynucleotidyl transferase is found in prothymocytes. J. exp. Med. 144, 543, 1976.PubMedCrossRefGoogle Scholar
  43. 42.
    Schlossman, S.F., Chess, L., Humphreys, R.E. and Strominger, J.L.: Distribution of la-like molecules on the surface of normal and leukaemic cells. Proc. natl. Acad. Sci. USA 73, 1288, 1976.PubMedCrossRefGoogle Scholar
  44. 43.
    Sen, L. and Borella, L.: Clinical importance of lymphoblasts with T markers in childhood acute leukaemia. New Engl. Jol. Med. 292, 828. 1975.CrossRefGoogle Scholar
  45. 44.
    Tsukimoto, I., Kwan, M.D., Wong, Y. and Lampkin, B.C.: Surface markers and prognostic factors in acute lymphoblastic leukaemia. New Engl. Mol. Med. 294, 245, 1976.CrossRefGoogle Scholar
  46. 45.
    Watanabe, K. and Hakomori, S.-I. Status of blood group carbohydrate chains in ontogenesis and in oncogenesis. J. exp. Med. 144, 1976.Google Scholar
  47. 46.
    Wernet, P.: Human la-type antigens: methods of detection, aspects of chemistry and biology, markers for disease states. Transpl. Rev. 30, 271, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • M. F. Greaves
    • 1
  • G. Janossy
    • 1
  • M. Roberts
    • 1
  • N. T. Rapson
    • 2
    • 3
  • R. B. Ellis
    • 2
    • 3
  • J. Chessels
    • 2
    • 3
  • T. A. Lister
    • 4
  • D. Catovsky
    • 5
  1. 1.Imperial Cancer Research FundMembrane Immunology GroupLondonUK
  2. 2.Departments of Haematology and Clinical GeneticsInstitute of Child HealthLondonUK
  3. 3.Departments of Haematology and Clinical GeneticsGt. Ormond Street Hospital for Sick ChildrenLondonUK
  4. 4.ICRF Medical Oncology UnitSt. Bartholomew’s HospitalLondonUK
  5. 5.MRC Leukaemia UnitHammersmith HospitalLondonUK

Personalised recommendations