Carotenoids in Higher Plants

  • B. H. Davies


Of nearly 450 naturally occurring carotenoids, only one quarter have been found in higher plants (for list and structures, see Davies, [24]). Higher plant carotenoids were prominent among the carotenoids whose structures were elucidated by the classical chemical approaches of Karrer and of Kuhn [50] and, by 1952, as many as 60 of the 95 carotenoids then known had been isolated from higher plants [38]. This situation resulted not so much from an early intrinsic interest in these particular pigments as from the fact that higher plant tissues were available on a sufficient scale to provide the large amounts of pure carotenoid necessary for structural determinations by chemical methods. Since the advent of small-scale preparative (e.g., thin-layer chromatography) and physico-organic methods (e.g., mass spectrometry) and with the ready availability, through the culture collections, of a wealth of pure strains and mutants of microorganisms, the interests of carotenoid chemists have broadened to include algae, bacteria, and fungi. It is from smaller-scale studies of the pigments of such organisms that many unusual carotenoid structures have emerged in recent years [57]. Nevertheless, the higher plants, because of their fundamental importance to man, are of continuing interest. This is reflected in the many recent studies that have contributed to our current understanding of the distribution, metabolism, and function of higher plant carotenoids.


Tomato Fruit Carotenoid Biosynthesis Carotenoid Synthesis Biochemical Nomenclature Trans Lycopene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, L.J., Kowerski, R.C., Rilling, H.C.: Synthesis and conversion of presqualene alcohol to squalene. J. Am. Chem. Soc. 93, 1782–1783 (1971)PubMedCrossRefGoogle Scholar
  2. 2.
    Altman, L.J., Ash, L., Kowerski, R.C., Epstein, W.W., Larsen, B.R., Rilling, H.C., Muscio, F., Gregonis, D.E.: Prephytoene pyrophosphate. A new intermediate in the biosynthesis of carotenoids. J. Am. Chem. Soc. 94, 3257–3259 (1972)PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson, D.G., Porter, J.W.: The biosynthesis of phytoene and other carotenes by enzymes of isolated higher plant plastids. Arch. Biochem. Biophys. 97, 509–519 (1962)PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson, I.C., Robertson, D.S.: Role of carotenoids in protecting chlorophyll from photodestruction. Plant Physiol. 35, 531–534 (1960)PubMedCrossRefGoogle Scholar
  5. 5.
    Aung Than, Bramley, P.M., Davies, B.H., Rees, A.F.: The stereochemistry of phytoene. Phy-. tochemistry 11, 3187–3192 (1972)Google Scholar
  6. 6.
    Barnes, F.J., Qureshi, A.A., Semmler, E.J., Porter, J.W.: Prelycopersene pyrophosphate and lycopersene, intermediates in carotene biosynthesis. J. Biol. Chem. 248, 2768–2773 (1973)PubMedGoogle Scholar
  7. 7.
    Bartels, P.G., McCullough, C.: A new inhibitor of carotenoid synthesis in higher plants: 4-chloro-5-(dimethylamino)-2-α,α,α-(trifluoro-m-tolyl)-3(2H)-pyridazinone (Sandoz 6706). Biochem. Biophys. Res. Commun. 48, 16–22 (1972)PubMedCrossRefGoogle Scholar
  8. 8.
    Beeler, D.A., Anderson, D.G., Porter, J.W.: The biosynthesis of squalene from mevalonic acid-2-C14 and farnesyl pyrophosphate-4,8,12-C14 by carrot and tomato enzymes. Arch. Biochem. Biophys. 102, 26–32 (1963)PubMedCrossRefGoogle Scholar
  9. 9.
    Ben-Aziz, A., Britton, G., Goodwin, T.W.: Carotene epoxides of Lycopersicon esculentum. Phytochemistry 12, 2759–2764 (1973)CrossRefGoogle Scholar
  10. 10.
    Ben-Aziz, A., Koren, E.: Interference in carotenogenesis as a mechanism of action of the pyridazinone herbicide Sandoz 6706. Accumulation of C40 carotenoid precursors, inhibition of β-carotene synthesis and enhancement of phytoene epoxidation. Plant Physiol. 54, 916–920 (1974)PubMedCrossRefGoogle Scholar
  11. 11.
    Booth, V.H.: β-Carotene in the flowers of Narcissus. Biochem. J. 65, 660–663 (1957)PubMedGoogle Scholar
  12. 12.
    Bramley, P.M., Davies, B.H., Aung Than: Alternative pathways of carotene cyclisation in Phycomyces blakesleeanus. Phytochemistry 16, 235–238 (1977)CrossRefGoogle Scholar
  13. 13.
    Britton, G.: Biosynthesis of carotenoids. In: Chemistry and Biochemistry of Plant Pigments, 2nd ed. Goodwin, T.W. (ed.). London-New York-San Francisco: Academic Press, 1976a, Vol. 1, pp. 262–327Google Scholar
  14. 14.
    Britton, G.: Carotene biosynthesis—later reactions. Pure Appl. Chem. 47, 223–236 (1976)CrossRefGoogle Scholar
  15. 15.
    Britton, G., Goodwin, T.W.: The occurrence of phytoene 1,2-epoxide and related compounds in tomatoes. Phytochemistry 8, 2257–2258 (1969)CrossRefGoogle Scholar
  16. 16.
    Britton, G., Goodwin, T.W.: Biosynthesis of carotenoids. Methods Enzymol. 18(C), 654–701 (1971)CrossRefGoogle Scholar
  17. 17.
    Britton, G., Goodwin, T.W.: Carotene epoxides from the delta tomato mutant. Phytochemistry 14, 2530–2532 (1975)CrossRefGoogle Scholar
  18. 18.
    Buggy, M.J., Britton, G., Goodwin, T.W.: Stereochemistry of phytoene biosynthesis by isolated chloroplasts. Biochem. J. 114, 641–643 (1969)PubMedGoogle Scholar
  19. 19.
    Burnett, J.H.: Function of carotenoids other than in photosynthesis. In: Chemistry and Biochemistry of Plant Pigments, 2nd ed. Goodwin, T.W. (ed.). London-New York-San Francisco: Academic Press, 1976, Vol. 1, pp. 655–679Google Scholar
  20. 20.
    Charlton, J.M., Treharne, K.J., Goodwin, T.W.: Incorporation of [2–14C] mevalonic acid into phytoene by isolated chloroplasts. Biochem. J. 105, 205–212 (1967)PubMedGoogle Scholar
  21. 21.
    Coggins, C.W., Jr., Henning, G.L., Yokoyama, H.: Lycopene accumulation induced by 2-(4-chlorophenylthio)-triethylamine hydrochloride. Science 168, 1589–1590 (1970)PubMedCrossRefGoogle Scholar
  22. 22.
    Commission on Biochemical Nomenclature: IUPAC Commission on the Nomenclature of Organic Chemistry and IUPAC-IUB Commission on Biochemical Nomenclature. Tentative rules for the nomenclature of carotenoids. Biochemistry (U.S.A.) 10, 4827–4837 (1971)Google Scholar
  23. 23.
    Commission on Biochemical Nomenclature: IUPAC Commission on the Nomenclature of Organic Chemistry and IUPAC-IUB Commission on Biochemical Nomenclature. Nomenclature of carotenoids (Recommendations 1974). Biochemistry (U.S.A.) 14, 1803–1804 (1975)Google Scholar
  24. 24.
    Davies, B.H.: Carotenoids. In: Chemistry and Biochemistry of Plant Pigments, 2nd ed. Goodwin, T.W. (ed.). London-New York-San Francisco: Academic Press, 1976, Vol.2 (Analytical Methods), pp. 38–165Google Scholar
  25. 25.
    Davies, B.H.: Carotene biosynthesis in fungi. Pure Appl. Chem. 35, 1–28 (1973)PubMedCrossRefGoogle Scholar
  26. 26.
    Davies, B.H.: Carotenoids —Aspects of biosynthesis and enzymology. Ber. Dtsch. Bot. Ges. 88, 7–25 (1975)Google Scholar
  27. 27.
    Davies, B.H., Rees, A.F.: 7′,8′,11′,12′-Tetrahydro-γ-carotene: a novel carotene from Phycomyces blakesleeanus. Phytochemistry 12, 2745–2750 (1973)CrossRefGoogle Scholar
  28. 28.
    Davies, B.H., Taylor, R.F.: Carotenoid biosynthesis—the early steps. Pure Appl. Chem. 47, 211–221 (1976)CrossRefGoogle Scholar
  29. 29.
    Davies, B.H., Mercer, E.I., Goodwin, T.W.: Attempts to detect lycopersene in carotenogenic organisms. Biochem. J. 81, 40P (1961)Google Scholar
  30. 30.
    Davies, B.H., Matthews, S., Kirk, J.T.O.: The nature and biosynthesis of carotenoids of different colour varieties of Capsicum annuum. Phytochemistry 9, 797–805 (1970)CrossRefGoogle Scholar
  31. 31.
    Davis, J.B., Jackman, L.M., Siddons, P.T., Weedon, B.C.L.: Carotenoids and related compounds. Part XIV. The structure and synthesis of phytoene, phytofluene, (-carotene and neuro-sporene. J. Chem. Soc. (C), 2154–2165 (1966)Google Scholar
  32. 32.
    Decker, K., Uehleke, H.: Eine enzymatische Isomerisierung von Lycopin und ß-Carotin. Hoppe Seylers Z. Physiol. Chem. 323, 61–76 (1961)CrossRefGoogle Scholar
  33. 33.
    Egger, K., Kleinig, H.: Die Ketocarotinoide in Adonis annua L. III. Vergleich mit synthetischen Substanzen. Phytochemistry 6, 903–905 (1967)CrossRefGoogle Scholar
  34. 34.
    Epstein, W.W., Rilling, H.C.: Studies on the mechanism of squalene biosynthesis. The structure of presqualene pyrophosphate. J. Biol. Chem. 245, 4597–4605 (1970)PubMedGoogle Scholar
  35. 35.
    Eslava, A.P., Cerdá-Olmedo, E.: Genetic control of phytoene dehydrogenation in Phycomyces. Plant Sci. Lett. 2, 9–14 (1974)CrossRefGoogle Scholar
  36. 36.
    Faludi-Dániel, A., Láng, F., Fradkin, L.I.: The state of chlorophyll a in leaves of carotenoid mutant maize. In: Biochemistry of Chloroplasts. Goodwin, T.W. (ed.). London-New York: Academic Press, 1966, Vol. 1, pp. 269–274Google Scholar
  37. 37.
    Firn, R.D., Friend, J.: Enzymatic production of the plant growth inhibitor, xanthoxin. Planta 103, 263–266 (1972)CrossRefGoogle Scholar
  38. 38.
    Goodwin, T.W.: Comparative Biochemistry of the Carotenoids. London: Chapman and Hall 1952Google Scholar
  39. 39.
    Goodwin, T.W.: Studies in carotenogenesis. 19. A survey of the polyenes in a number of ripe berries. Biochem. J. 62, 346–352 (1956)PubMedGoogle Scholar
  40. 40.
    Goodwin, T.W.: Studies in carotenogenesis. 24. The changes in carotenoid and chlorophyll pigments in the leaves of deciduous trees during Autumn necrosis. Biochem. J. 68, 503–511 (1958)PubMedGoogle Scholar
  41. 41.
    Goodwin, T.W.: Biosynthesis. In: Carotenoids. Isler, O. (ed.). Basel: Birkhäuser, 1971, pp. 577–636Google Scholar
  42. 42.
    Goodwin, T.W.: Carotenoids. In: Phytochemistry. Miller, L.P. (ed.). New York-Cincinnati-Toronto-London-Melbourne: Van Nostrand Reinhold, 1973, Vol. 1, pp. 112–142Google Scholar
  43. 43.
    Goodwin, T.W.: Distribution of carotenoids. In: Chemistry and Biochemistry of Plant Pigments, 2nd ed. Goodwin, T.W. (ed.). London-New York-San Francisco: Academic Press, 1976, Vol. 1, pp. 225–261Google Scholar
  44. 44.
    Goodwin, T.W., Goad, L.J.: Carotenoids and triterpenoids. In: The Biochemistry of Fruits and their Products. Hulme, A.C. (ed.). London-New York: Academic Press, 1970, Vol. 1, pp. 305–368Google Scholar
  45. 45.
    Goodwin, T.W., Thomas, D.M.: The carotenoid pigments in the petals of Mimulus cupreus and Mimulus tigrinis. Phytochemistry 3, 47–50 (1964)CrossRefGoogle Scholar
  46. 46.
    Gregonis, D.E., Rilling, H.C.: The stereochemistry of trans-phytoene synthesis. Some observations on lycopersene as a carotene precursor and a mechanism for the synthesis of cis- and trans-phytoene. Biochemistry 13, 1538–1542 (1974)PubMedCrossRefGoogle Scholar
  47. 47.
    Hill, H.M., Calderwood, S.K., Rogers, L.J.: Conversion of lycopene to β-carotene by plastids isolated from higher plants. Phytochemistry 10, 2051–2058 (1971)CrossRefGoogle Scholar
  48. 48.
    Jungalwala, F.B., Porter, J.W.: The configuration of phytoene. Arch. Biochem. Biophys. 110, 291–299 (1965)PubMedCrossRefGoogle Scholar
  49. 49.
    Jungalwala, F.B., Porter, J.W.: Enzymatic synthesis of phytoene in tomato. Methods Enzymol. 15, 454–460 (1969)CrossRefGoogle Scholar
  50. 50.
    Karrer, P., Jucker, E.: Carotenoids. New York-Amsterdam-London-Brussels: Elsevier, 1950Google Scholar
  51. 51.
    Kleudgen, H.K., Lichtenthaler, H.K.: Die Wirkung von Phytochrom auf die Bildung von Einzelcarotinoiden in etiolierten Hordeum-Keimlingen. Z. Naturforsch. 30C, 67–68 (1975)Google Scholar
  52. 52.
    Knypl, J.S.: Accumulation of lycopene in detached cotyledons of pumpkin treated with (2-chloroethyl)-trimethylammonium chloride. Naturwissenschaften 56, 572 (1969)PubMedCrossRefGoogle Scholar
  53. 53.
    Krinsky, N.I.: Function. In: Carotenoids. Isler, O. (ed.). Basel: Birkhäuser, 1971, pp. 669–716Google Scholar
  54. 54.
    Krinsky, N.I.: Cellular damage initiated by visible light. In: The Survival of Vegetative Microbes (Soc. Gen. Microbiol., Symp. 26). Gray, T.R.G., Postgate, J.R. (eds.). Cambridge-London-New York-Melbourne: Cambridge Univ. Press, 1976, pp. 209–239Google Scholar
  55. 55.
    Kushwaha, S.C., Subbarayan, C., Beeler, D.A., Porter, J.W.: The conversion of lycopene-15,15′-3H to cyclic carotenes by soluble extracts of higher plant plastids. J. Biol. Chem. 244, 3635–3642 (1969)PubMedGoogle Scholar
  56. 56.
    Kushwaha, S.C., Suzue, G., Subbarayan, C., Porter, J.W.: The conversion of phytoene-14C to acyclic, monocyclic and dicyclic carotenes and the conversion of lycopene-15,15′-3H to mono-and dicyclic carotenes by soluble enzyme systems obtained from the plastids of tomato fruit. J. Biol. Chem. 245, 4708–4717 (1970)PubMedGoogle Scholar
  57. 57.
    Liaaen-Jensen, S., Andrewes, A.G.: Microbialcarotenoids. Ann. Rev. Microbiol. 26, 225–248 (1972)CrossRefGoogle Scholar
  58. 58.
    Lichtenthaler, H.K.: Die Lokalisation der Plastidenchinone und Carotinoide in den Chromopla-sten der Petalen von Sarothamnus scoparius (L.) Wimm ex Koch. Planta 90, 142–152 (1970)CrossRefGoogle Scholar
  59. 59.
    Lichtenthaler, H.K.: Control of light-induced carotenoid synthesis in Raphanus seedlings by phytochrome. Physiol. Plantarum 34, 357–358 (1975)CrossRefGoogle Scholar
  60. 60.
    McDermott, J.C.B., Britton, G., Goodwin, T.W.: Carotenoid biosynthesis in a Flavobacterium sp. Stereochemistry of hydrogen elimination in the desaturation of phytoene to lycopene, rubixan-thin and zeaxanthin. Biochem. J. 134, 1115–1117 (1973)PubMedGoogle Scholar
  61. 61.
    McDermott, J.C.B., Brown, D.J., Britton, G., Goodwin, T.W.: Alternative pathways of zeaxanthin biosynthesis in a Flavobacterium species. Experiments with nicotine as inhibitor. Biochem. J. 144, 231–243 (1974)PubMedGoogle Scholar
  62. 62.
    Maudinas, B., Bucholtz, M.L., Papastephanou, C., Katigar, S.S., Briedis, A.V., Porter, J.W.: Adenosines-triphosphate stimulation of the activity of a partially purified phytoene synthetase complex. Biochem. Biophys. Res. Commun. 66, 430–436 (1975a)PubMedCrossRefGoogle Scholar
  63. 63.
    Maudinas, B., Bucholtz, M.L., Porter, J.W.: The partial purification and properties of a phytoene synthetase complex isolated from tomato fruit plastids. Abstr. 4th Int. Symp. Carotenoids (Berne), 1975 b, pp. 41–42Google Scholar
  64. 64.
    Mercer, E.I., Davies, B.H., Goodwin, T.W.: Studies in carotenogenesis. 29. Attempts to detect lycopersene in higher plants. Biochem. J. 87, 317–325 (1963)PubMedGoogle Scholar
  65. 65.
    Milborrow, B.V.: The chemistry and physiology of abscisic acid. Ann. Rev. Plant Physiol. 25, 259–307 (1974)CrossRefGoogle Scholar
  66. 66.
    Nusbaum-Cassuto, E., Villoutreix, J.: Mise en évidence du lycopersène chez les végétaux superieurs. C.R. Acad. Sci. 260, 1013–1015 (1965)Google Scholar
  67. 67.
    Papastephanou, C., Barnes, F.J., Briedis, A.V., Porter, J.W.: Enzymatic synthesis of carotenes by cell-free preparations of fruit of several genetic selections of tomatoes. Arch. Biochem. Biophys. 157, 415–425 (1973)PubMedCrossRefGoogle Scholar
  68. 68.
    Pennock, J.F., Hemming, F.W., Morton, R.A.: Some unsaponifiable lipids of the spadix of Arum maculatum. Biochem. J. 82, 11P (1962)Google Scholar
  69. 69.
    Petzold, E.N., Quackenbush, F.W., McQuistan, M.: Zeacarotenes, new provitamins A from corn. Arch. Biochem. Biophys. 82, 117–124 (1959)PubMedCrossRefGoogle Scholar
  70. 70.
    Porter, J.W., Lincoln, R.E.: I. Lycopersicon selection containing a high content of carotenes and colorless polyenes. II. The mechanism of carotene biosynthesis. Arch. Biochem. 27, 390–403 (1950)PubMedGoogle Scholar
  71. 71.
    Qureshi, A.A., Barnes, F.J., Semmler, E.J., Porter, J.W.: Biosynthesis of prelycopersene pyrophosphate and lycopersene by squalene synthetase. J. Biol. Chem. 248, 2755–2767 (1973)PubMedGoogle Scholar
  72. 72.
    Qureshi, A.A., Andrewes, A.G., Qureshi, N., Porter, J.W.: The enzymatic conversion of cis-[14C] phytofluene, trans-[14C] phytofluene, and trans-[14C] ζ-carotene to more unsaturated acyclic, monocyclic and dicyclic carotenes by a cell-free preparation of red tomato fruits. Arch. Biochem. Biophys. 162, 93–107 (1974a)PubMedCrossRefGoogle Scholar
  73. 73.
    Qureshi, A.A., Kim, M., Qureshi, N., Porter, J.W.: The enzymatic conversion of cis-[l4rC] phytofluene, trans-[14C] phytofluene and trans-[14C] ζ-carotene to poly-cis acyclic carotenes by a cell-free preparation of tangerine tomato fruit plastids. Arch. Biochem. Biophys. 162, 108–116 (1974b)PubMedCrossRefGoogle Scholar
  74. 74.
    Qureshi, A.A., Qureshi, N., Kim, M., Porter, J.W.: The isolation, purification and characterization of cis-ζ-carotene and the demonstration of its conversion to acyclic, monocyclic and dicyclic carotenes by a soluble enzyme system obtained from the plastids of tangerine tomato fruit. Arch. Biochem. Biophys. 162, 117–125 (1974c)PubMedCrossRefGoogle Scholar
  75. 75.
    Raymundo, L.C., Simpson, K.L.: The isolation of a poly-cis-ζ-carotene from the tangerine tomato. Phytochemistry 11, 397–400 (1972)CrossRefGoogle Scholar
  76. 76.
    Raymundo, L.C., Chichester, C.O., Simpson, K.L.: Light dependent carotenoid synthesis in the tomato fruit. J. Agr. Food Chem. 24, 59–64 (1976)CrossRefGoogle Scholar
  77. 77.
    Seybold, A.: Untersuchungen über den Farbwechsel von Blumenblättern, Früchten und Samenschalen. Heidelberg: Springer, 1954, 96 pp.Google Scholar
  78. 78.
    Simpson, D.J., Chichester, C.O., Lee, T.H.: Chemical regulation of plastid development. I. Inhibition of chlorophyll biosynthesis in detached pumpkin cotyledons by CPTA. A pigment and ultrastructural study. Australian J. Plant Physiol. 1, 135–147 (1974)CrossRefGoogle Scholar
  79. 79.
    Simpson, K.L., Lee, T.-C., Rodriguez, D.B., Chichester, C.O.: Metabolism in stored and senescent tissues. In: Chemistry and Biochemistry of Plant Pigments, 2nd ed. Goodwin, T.W. (ed.). London-New York-San Francisco: Academic Press, 1976, Vol. 1, pp. 779–842Google Scholar
  80. 80.
    Song, P.-S., Moore, T.A.: On the photoreceptor pigment for phototropism and phototaxis: Is a carotenoid the most likely candidate? Photochem. Photobiol. 19, 435–441 (1974)PubMedCrossRefGoogle Scholar
  81. 81.
    Strain, H.H.: Fat-soluble chloroplast pigments: their identification and distribution in various Australian plants. In: Biochemistry of Chloroplasts. Goodwin, T.W. (ed.). London-New York: Academic Press, 1966, Vol. 1, pp. 387–406Google Scholar
  82. 82.
    Taylor, H.F., Burden, R.S.: Identification of plant growth inhibitors produced by photolysis of violaxanthin. Phytochemistry 9, 2217–2223 (1970)CrossRefGoogle Scholar
  83. 83.
    Taylor, H.F., Burden, R.S.: Xanthoxin, a new naturally occurring plant growth inhibitor. Nature (London) 227, 302–304 (1970)CrossRefGoogle Scholar
  84. 84.
    Taylor, H.F., Burden, R.S.: Xanthoxin, a recently discovered plant growth inhibitor. Proc. Roy. Soc. (London) Ser. B 180, 317–346 (1972)CrossRefGoogle Scholar
  85. 85.
    Tevini, M., Lichtenthaler, H.K.: Untersuchungen über die Pigment- und Lipochinonausstattung der zwei photosynthetischen Pigmentsysteme. Z. Pflanzenphysiol. 62, 17–32 (1970)Google Scholar
  86. 86.
    Thornber, J.P., Stewart, J.C., Hatton, M.W.C., Bailey, J.L.: Studies on the nature of chloroplast lamellae. II. Chemical composition and further physical properties of two chlorophyll-protein complexes. Biochemistry 6, 2006–2014 (1976)CrossRefGoogle Scholar
  87. 87.
    Treharne, K.J., Mercer, E.I., Goodwin, T.W.: Carotenoid biosynthesis in some maize mutants. Phytochemistry 5, 581–587 (1966)CrossRefGoogle Scholar
  88. 88.
    Weedon, B.C.L.: Allenic and acetylenic carotenoids. Rev. Pure Appl. Chem. (Australia) 20, 51–66 (1970)Google Scholar
  89. 89.
    White, J.W., Jr., Zscheile, F.P., Brunson, A.M.: The carotenoids of yellow corn grain. J. Am. Chem. Soc. 64, 2603–2606 (1942)CrossRefGoogle Scholar
  90. 90.
    Whittingham, C.P.: Function in photosynthesis. In: Chemistry and Biochemistry of Plant Pigments, 2nd ed. Goodwin, T.W. (ed.). London-New York-San Francisco: Academic Press, 1976, Vol. 1, pp. 624–654Google Scholar
  91. 91.
    Williams, R.J.H., Britton, G., Goodwin, T.W.: A possible mechanism for the biosynthesis of eschscholtzxanthin. Biochim. Biophys. Acta 124, 200–203 (1966)PubMedCrossRefGoogle Scholar
  92. 92.
    Williams, R.J.H., Charlton, J.M., Britton, G., Goodwin, T.W.: The stereospecific biosynthesis of phytoene and polyunsaturated carotenes. Biochem. J. 104, 767–777 (1967a)PubMedGoogle Scholar
  93. 93.
    Williams, R.J.H., Britton, G., Goodwin, T.W.: The biosynthesis of cyclic carotenes. Biochem. J. 105, 99–105 (1967b)PubMedGoogle Scholar
  94. 94.
    Winterstein, A., Studer, A., Rüegg, R.: Neuere Ergebnisse der Carotinoidforschung. Ber. Deut. Chem. Ges. 93, 2951–2965 (1960)Google Scholar
  95. 95.
    Yamamoto, H.Y., Chichester, C.O., Nakayama, T.O.M.: Biosynthetic origin of oxygen in the leaf xanthophylls. Arch. Biochem. Biophys. 96, 645–649 (1962)PubMedCrossRefGoogle Scholar
  96. 96.
    Yokoyama, H., White, M.J.: Citrus carotenoids—VI. Carotenoid pigments in the flavedo of Sinton citrangequat. Phytochemistry 5, 1159–1173 (1966)CrossRefGoogle Scholar
  97. 97.
    Yokoyama, H., White, M.J.: Carotenoids in the flavedo of Marsh seedless grapefruit. J. Agr. Food Chem. 15, 693–696 (1967)CrossRefGoogle Scholar
  98. 98.
    Yokoyama, H., White, M.J.: Carotenoid formation in Triphasia trifolia. Phytochemistry 9, 1795–1797(1970)CrossRefGoogle Scholar
  99. 99.
    Yokoyama, H., Coggins, C.W., Henning, G.L.: The effect of 2-(4-chlorophenylthio)-triethyl-amine hydrochloride on the formation of carotenoids of citrus. Phytochemistry 10, 1831–1834 (1971)CrossRefGoogle Scholar
  100. 100.
    Yokoyama, H., de Benedict, C., Coggins, C.W., Henning, G.L.: Induced color changes in grapefruit and orange. Phytochemistry 11, 1721–1724 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • B. H. Davies

There are no affiliations available

Personalised recommendations