Skip to main content

The Biosynthesis and Biological Significance of Prenols and Their Phosphorylated Derivatives

  • Conference paper
Book cover Lipids and Lipid Polymers in Higher Plants

Abstract

The biosynthesis of all prenyl lipids involves the intermediary formation of one or more prenyl pyrophosphates. The basic principles of the pathways were first established by the studies of Bloch, Cornforth, Lynen, Popjak, and others on squalene biosynthesis in preparations of mammalian liver and of yeast. In higher plants the general skeleton of the pathways appears to be much the same, but more detailed aspects are complicated by a large range of specialised products that are often restricted to a few species. Elucidation of biosynthetic pathways in plants has also frequently been beset by technical difficulties peculiar to this source of tissue. Several reviews relating to earlier aspects of isoprenoid biosynthesis in general and including plant work are recommended to the reader [14, 20, 59]. This review summarises briefly this earlier material with reference to some recent relevant original papers and then deals with a few special aspects of the subject matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, S.R., Heinstein, P.F.: Evidence for trans-trans and cis-cis farnesyl pyrophosphate synthesis in Gossipium hirsutum. Phytochemistry 12, 2167–2172 (1973)

    Article  CAS  Google Scholar 

  2. Alam, S., Hemming, F.W.: Betulaprenol phosphate as an acceptor of mannose from GDP-mannose in Phaseolus aureus preparations. FEBS Lett. 19, 60–62 (1971)

    Article  PubMed  CAS  Google Scholar 

  3. Alam, S., Hemming, F.W.: Polyprenol phosphates and mannosyl transferases in Phaseolus aureus. Phytochemistry 12, 1641–1649 (1973)

    Article  CAS  Google Scholar 

  4. Allen, R.T. van, Nes, W.R.: The phosphorylation of geraniol in germinating peas. Phytochemistry 5, 85–88 (1966)

    Google Scholar 

  5. Attaway, J. A., Pieringer, A.P., Barabas, L.T.: The origin of citrus flavor components —III. A study of the percentage variations in peel and leaf oil terpenes during one season. Phytochem-istry 6, 25–32 (1967)

    Article  CAS  Google Scholar 

  6. Archer, B.L., Barnard, D., Cockbain, E.G., Cornforth, J.W., Cornforth, R.H., Popjak, G.: The stereospecificity of the biosynthesis of rubber by the latex of Hevea brasiliensis. Proc. Roy. Soc. (London) Ser. B. 163, 519–523 (1966)

    Article  Google Scholar 

  7. Audley, B.G.: Biosynthesis of rubber. Adv. Enzymol. 29, 221–257 (1967)

    PubMed  Google Scholar 

  8. Armarego, W.L.F., Goad, L.J., Goodwin, T.W.: Biosynthesis of α-spinasterol from [2–14C, (4R)-4–3H1] mevalonic acid by Spinacea oleracea and Medicago satira. Phytochemistry 12, 2181–2187 (1973)

    Article  CAS  Google Scholar 

  9. Banthorpe, D.V., Bucknall, G.A., Doonan, H.J., Doonan, S., Rowan, M.G.: The biosynthesis of geraniol and nerol in cell free extracts of Tanacetum vulgare. Phytochemistry 15, 91–100 (1976)

    Article  CAS  Google Scholar 

  10. Banthorpe, D.V., Charlwood, B.V., Francis, M.J.O.: The biosynthesis of monoterpenes. Chem. Revs. 72, 115–155 (1972a)

    Article  CAS  Google Scholar 

  11. Banthorpe, D.V., Le Patourel, G.N.J., Francis, M.J.O.: Biosynthesis of geraniol and nerol and their β-glucosides in Pelargonium graveolus and Rosa dilecta. Biochem. J. 130, 1045–1054 (1972 b)

    PubMed  CAS  Google Scholar 

  12. Benveniste, P., Hartmann, M.A., Durst, F.: Biosynthesis of sterols in Jerusalem Artichoke tuber tissue. Phytochemistry 11, 3003–3005 (1972)

    Article  Google Scholar 

  13. Beytia, E., Valenzuela, P., Cori, O.: Terpene biosynthesis: formation of nerol, geraniol and other prenols by an enzyme system from Pinus radiata seedlings. Arch. Biochem. Biophys. 129, 345–351 (1969)

    Google Scholar 

  14. Bloch, K.: The biological synthesis of cholesterol. Science 150, 19–23 (1965)

    Article  PubMed  CAS  Google Scholar 

  15. Brett, C.T., Northcote, D.H.: The formation of oligoglucans linked to a lipid during synthesis of a β-glucan by characterised membrane fractions isolated from peas. Biochem. J. 148, 107–117 (1975)

    PubMed  CAS  Google Scholar 

  16. Brooker, J.D., Russell, D.W.: Mechanisms of regulation of plant growth. Proc. Roy. Soc. New Zealand 365–370 (1974)

    Google Scholar 

  17. Brooker, J.D., Russell, D.W.: Properties of a microsomal 3-hydroxy, 3-methyl glutaryl CoA reductase from Pisum sativum seedlings. Arch. Biochem. Biophys. 167, 723–729 (1975a)

    Article  PubMed  CAS  Google Scholar 

  18. Brooker, J.D., Russell, D.W.: Subcellular localization of 3-hydroxy, 3-methyl glutaryl CoA reductase in Pisum sativum seedlings. Arch. Biochem. Biophys. 167, 730–737 (1975 b)

    Article  PubMed  CAS  Google Scholar 

  19. Chayet, L., Pont Lezica, R., George-Nascimento, C., Cori, O.: Biosynthesis of sesquiterpene alcohols and aldehydes by cell-free extracts from orange flavedo. Phytochemistry 12, 95–101 (1973)

    Article  CAS  Google Scholar 

  20. Clayton, R.B.: Biosynthesis of sterols, steroids and terpenoids. Part I. Biogenesis of cholesterol and the fundamental steps in terpenoid biosynthesis. Quart. Rev. 19, 168–200 (1965)

    Article  CAS  Google Scholar 

  21. Cornforth, J.W., Cornforth, R.H., Donninger, C., Popjak, G.: Studies on the biosynthesis of cholesterol. XIX. Steric course of hydrogen eliminations and of C-C bond formations in squalene biosynthesis. Proc. Roy. Soc. B. 163, 492–514 (1966)

    Article  CAS  Google Scholar 

  22. Costes, C.: Biosynthese du phytol des chlorophylles et du squelette tetraterpenique des carote-noides dans les feuilles vertes. Phytochem. 5, 311–324 (1966)

    Article  CAS  Google Scholar 

  23. Croteau, R., Loomis, W.D.: Biosynthesis of mono- and sesquiterpenes in peppermint from mevalonate-2–14C. Phytochemistry 11, 1055–1064 (1972)

    Article  CAS  Google Scholar 

  24. Croteau, R., Loomis, W.D.: Biosynthesis of squalene and other triterpenes in Mentha piperita from mevalonate-2–14C. Phytochemistry 12, 1957–1965 (1973)

    Article  CAS  Google Scholar 

  25. Dunphy, P.J.: Biosynthesis if monoterpenes in rose petals. Phytochemistry 12, 1512 (1973)

    Article  Google Scholar 

  26. Dunphy, P.J., Allcock, C.: Isolation and properties of a monoterpene reductase from rose petals. Phytochemistry 11, 1887–1891 (1972)

    Article  CAS  Google Scholar 

  27. Evans, R., Holton, A.M., Hanson, J.R.: Biosynthesis of 2-cis-farnesol. J. Chem. Soc. Commun. 465 (1973)

    Google Scholar 

  28. Fimognari, G.M., Rodwell, V.W.: Mevalonate biosynthesis in rat liver. Lipids 5, 104–108 (1970)

    Article  PubMed  CAS  Google Scholar 

  29. Forsee, W.T., Elbein, A.D.: Glycoprotein biosynthesis in plants. Demonstration of lipid-linked Oligosaccharides of mannose and N-acetylglucosamine. J. Biol. Chem. 250, 9283–9293 (1975)

    PubMed  CAS  Google Scholar 

  30. Francis, M.J.O., Allcock, C.: Geraniol β-D-glucoside; occurrence and synthesis in rose flowers. Phytochemistry 8, 1339–1347 (1969)

    Article  CAS  Google Scholar 

  31. Goodwin, T.W.: The biosynthesis of carotenoids. In: Biosynthetic Pathways in Higher Plants. Pridham, J.B., Swain, T. (eds.). London-New York: Academic Press, 1965, pp. 37–71

    Google Scholar 

  32. Gough, D.P., Hemming, F.W.: The stereochemistry of betulaprenol biosynthesis. Biochem. J. 117, 309–317 (1970)

    PubMed  CAS  Google Scholar 

  33. Gray, J.C., Kekwick, R.G.O.: Mevalonate kinase in green leaves and etiolated cotyledons of the French bean Phaseolus vulgaris. Biochem. J. 133, 335–347 (1973)

    PubMed  CAS  Google Scholar 

  34. Green, T.R., Baisted, D.J.: Development of the squalene synthesizing system during early stages of pea seed germination. Biochem. J. 125, 1145–1147 (1971)

    PubMed  CAS  Google Scholar 

  35. Green, T.R., Baisted, D.J.: Development of the activities of enzymes of the isoprenoid pathway during early stages of pea-seed germination. Biochem. J. 130, 983–995 (1972)

    PubMed  CAS  Google Scholar 

  36. Grunwald, C.: Sterol changes during germination of Nicotiana tabacum seeds. Plant Physiol. 50, 69–72 (1972)

    Article  PubMed  Google Scholar 

  37. Grunwald, C.: Plant sterols. Ann. Rev. Plant Physiol. 26, 209–236 (1975)

    Article  CAS  Google Scholar 

  38. Hannus, K., Pensar, G.: Polyisoprenols in Pinus sylvestris needles. Phytochemistry 13, 2563–2566 (1974)

    Article  CAS  Google Scholar 

  39. Hanson, J.R.: The biosynthesis of C5-C20 terpenoid compounds. Chem. Soc. Biosynth. 3, 1–10 (1975)

    CAS  Google Scholar 

  40. Hartmann, M.A., Benveniste, P., Durst, F.: Biosynthesis of sterols in Jerusalem artichoke tuber tissue. Phytochemistry 11, 3003–3005 (1972)

    Article  CAS  Google Scholar 

  41. Hemming, F.W.: Polyprenols. Biochem. Soc. Symp. 29, 105–117 (1970)

    PubMed  CAS  Google Scholar 

  42. Hemming, F.W.: Lipids in glycan biosynthesis. M.T.P. Internat. Rev. Sci. Biochem. Ser. One 4, 39–97 (1974)

    Google Scholar 

  43. Hemming, F.W., Morton, R.A., Pennock, J.F.: Constituents of the unsaponifiable lipid from the spadix of Arum muculatum. Proc. Roy. Soc. (London) Ser. B. 158, 291–310 (1963)

    Article  Google Scholar 

  44. Higgins, M.J., Kekwick, R.G.O.: An investigation into the role of malonyl-coenzyme A in isoprenoid biosynthesis. Biochem. J. 134, 295–310 (1973)

    CAS  Google Scholar 

  45. Hill, H.M., Rogers, L.D.: Mevalonate activating enzymes and phosphatases in higher plants. Phytochemistry 13, 763–777 (1974)

    Article  CAS  Google Scholar 

  46. Janiszowska, W., Michalski, W., Kasprzyk, Z.: Polyprenyl quinones and α-tocopherol in Calendula officinalis. Phytochemistry 15, 125–127 (1976)

    Article  CAS  Google Scholar 

  47. Jedlicki, E., Jacob, G., Frini, F., Cori, O.: Stereospecificity of isopentenylpyrophosphate isomer-ase and prenyl transferase from Pinus and Citrus. Arch. Biochem. Biophys. 152, 590–596 (1972)

    Article  PubMed  CAS  Google Scholar 

  48. Jungwala, F.B., Porter, J.W.: Biosynthesis of phytoene from isopentenyl and farnesyl pyrophosphates by a partially purified tomato enzyme system. Arch. Biochem. Biophys. 119, 209–219 (1967)

    Article  Google Scholar 

  49. Lennarz, W.J., Scher, M.G.: Metabolism and function of polyisoprenol sugar intermediates in membrane-associated reactions. Biochim. Biophys. Acta 265, 417–441 (1972)

    PubMed  CAS  Google Scholar 

  50. Lichtenthaler, H.K.: Regulation of prenyl chain synthesis in etiolated Hordeum seedlings by far-red and white light. Physiol. Plantarum 33, 241–244 (1975)

    Article  CAS  Google Scholar 

  51. Lichtenthaler, H.K., Becker, K.: The influence of continuous far-red and white light on prenyl chain synthesis in plastids of Raphanus seedlings. Planta 122, 255–258 (1975)

    Article  CAS  Google Scholar 

  52. Lindgren, B.O.: Homologous aliphatic C30-C45 terpenols in birch wood. Acta Chem. Scand. 19, 1317–1326 (1965)

    Article  CAS  Google Scholar 

  53. Loomis, W.D., Battaile, J.: Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5, 423–438 (1966)

    Article  CAS  Google Scholar 

  54. Madyastha, K.M., Loomis, W.D.: Phosphorylation of geraniol by cell-free enzymes from Mentha piperita. Federation Proc. 28, 665 (1969)

    Google Scholar 

  55. Oshina, K., Uritani, I.: Enzymatic synthesis of a β-hydroxy-β-methylglutaric acid-derivative by a cell-free system from sweet potato with black rot. J. Biochem. (Tokyo) 63, 617–623 (1968)

    Google Scholar 

  56. Overton, K.H., Roberts, F.M.: Interconversions of trans-trans- and cis-trans-famesol by enzymes from Andrographis tissue cultures. Biochem. J. 144, 585–592 (1974)

    PubMed  CAS  Google Scholar 

  57. Pont Lezica, R., Brett, C.T., Martinez, P.R., Dankert, M.A.: A glucose acceptor in plants with the properties of an α-saturated polyprenol monophosphate. Biochem. Biophys. Res. Commun. 66, 980–987 (1975)

    Article  PubMed  CAS  Google Scholar 

  58. Potty, V.H., Breummer, J.H.: The formation of isoprenoid pyrophosphates from mevalonate by orange enzymes. Phytochemistry 9, 1229–1237 (1970)

    Article  CAS  Google Scholar 

  59. Pridham, J.B.: Terpenoids in Plants. London-New York: Academic Press 1967

    Google Scholar 

  60. Roberts, R.M., Pollard, W.E.: The incorporation of D-glucosamine into glycolipids and glycoproteins of membrane preparations from Phaseolus aureus hypocotyls. Plant Physiol. 55, 431–436 (1975)

    Article  PubMed  CAS  Google Scholar 

  61. Rogers, L.J., Shah, S.P.J., Goodwin, T.W.: Intracellular localization of mevalonate-activating enzymes in plant cells. Biochem. J. 99, 381–388 (1966a)

    PubMed  CAS  Google Scholar 

  62. Rogers, L.J., Shah, S.P.J., Goodwin, T.W.: Mevalonate kinase isoenzymes in plant cells. Biochem. J. 100, 14c—17c (1966b)

    Google Scholar 

  63. Rudney, H.: The biosynthesis of terpenoid quinones. Biochem. Soc. Symp. 29, 89–103 (1970)

    PubMed  CAS  Google Scholar 

  64. Sasak, W., Chojnacki, T.: The distribution of polyprenols in sub-tropical plants. Acta Biochem. Polon. 20, 343–350 (1973)

    CAS  Google Scholar 

  65. Stevenson, J., Hemming, F.W., Morton, R.A.: The intracellular distribution of solanesol and plastoquinone in green leaves of the tobacco plant. Biochem. J. 88, 52–56 (1963)

    PubMed  CAS  Google Scholar 

  66. Suzuki, Y., Marumo, S.: Trans- to -cis 2,3-double bond isomerization of epoxyfarnesol and farnesol by fungus. Tetrahedron Lett. 5101–5104 (1972)

    Google Scholar 

  67. Threlfall, D.R.: Biosynthesis of terpenoid quinones. In: Terpenoids in Plants. Pridham, J.B. (ed.). London-New York: Academic Press, 1967, pp. 191–222

    Google Scholar 

  68. Upper, C.D., West, C.A.: Biosynthesis of gibberelins. II. Enzymic cyclization of geranylfarnesyl pyrophosphate to kaurene. J. Biol. Chem. 242, 3285–3292 (1967)

    PubMed  CAS  Google Scholar 

  69. Villemez, C.L.: Characterization of intermediates in plant cell wall biosynthesis. Biochem. Biophys. Res. Commun. 40, 636–641 (1970)

    CAS  Google Scholar 

  70. Villemez, C.L., Clark, A.F.: A particle bound intermediate in the biosynthesis of plant cell wall polysaccharides. Biochem. Biophys. Res. Commun. 36, 57–63 (1969)

    Article  PubMed  CAS  Google Scholar 

  71. Wellburn, A.R., Hemming, F.W.: Polyprenols of wood and leaf tissue of the silver birch, Betula verrucosa. Nature (London) 212, 1364–1366 (1966 a)

    Article  CAS  Google Scholar 

  72. Wellburn, A.R., Hemming, F.W.: The occurrence and seasonal distribution of higher isoprenoid alcohols in the plant kingdom. Phytochemistry 5, 969–975 (1966 b)

    Article  CAS  Google Scholar 

  73. Zinkel, D.F., Evans, B.B.: Terpenoids of Pinus strobus cortex tissue. Phytochemistry 11, 3387–3389 (1972)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemming, F.W. (1977). The Biosynthesis and Biological Significance of Prenols and Their Phosphorylated Derivatives. In: Tevini, M., Lichtenthaler, H.K. (eds) Lipids and Lipid Polymers in Higher Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66632-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66632-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66634-6

  • Online ISBN: 978-3-642-66632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics