Advertisement

The Electronic Structures of the Hexaborides and the Diborides

  • P. G. Perkins

Abstract

The current state of knowledge of the electronic structures of the binary di- and hexaborides is reviewed. New work is presented which allows rationalization of the stability of these materials as well as the metal-deficient and mixed-metal phases. Band structure and density-of-states calculations lead to values of electrical conductivities and Hall coefficients for these materials which agree well with experimental data.

Keywords

Band Structure Fermi Surface Boron Atom Hall Coefficient Bloch Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ARMSTRONG, D.R., BREEZE, A., PERKINS, P.G.: On the electronic structure of some metal hexaborides. J. Phys. (C) 8, 3558–3570 (1975)Google Scholar
  2. ARMSTRONG, D.R., PERKINS, P.G., STEWART, J.J.P.: Calculation of the electronic structure of boranes by the self-consistent molecular orbital method. Parti: B10H14 and some neutral chloroboranes. J. Chem. Soc. Dalton Trans., 3674–3679 (1971)Google Scholar
  3. ARMSTRONG, D.R., PERKINS, P.G., STEWART, J.J.P.: Calculation of the electronic structure of boranes by the self-consistent molecular orbital method. Part II: Highly symmetrical cage anions. J. Chem. Soc., Dalton Trans., 627–632 (1973)Google Scholar
  4. ARONSSON, B.: In: Borides, Silicides and Phosphides. B. Aronsson, R. Lundström and S. Lundquist (eds.). New York: Wiley and Sons, 1965, p. 32Google Scholar
  5. BALLHAUSEN, C.J., GRAY, H.B.: The electronic structure of the vanadyl ion. Inorg. Chem. 1, 111–122 (1962)Google Scholar
  6. BLUM, P., BERTAUT, F.: Contribution à l’étude des borures à teneur élevée en bore. Acta Cryst. 7, 81–86 (1954)CrossRefGoogle Scholar
  7. DECKER, R.W., STEBBINS, D.W.: Photoelectric work functions of borides of La, Pr and Nd. J. Appl. Phys. 26, 1004–1006 (1955)CrossRefGoogle Scholar
  8. FLEMING, G.S., LIU, S.H., LOUCKS, T.L.: Fermi surfaces for DHCP La, Nd and Pr. Relation to magnetic ordering and crystal structure. Phys. Rev. Lett. 21, 1524–1526 (1968)CrossRefGoogle Scholar
  9. HAGENMULLER, P., NASLAIN, R.: An alkali boride: the hexaboride, NaB6. C. R. Acad. Sci. (Paris) 257, 1294–1296 (1963).Google Scholar
  10. HERMAN, F.: Theoretical investigation of the electronic energy band structure of solids. Rev. Mod. Phys. 30, 102–121 (1958)CrossRefGoogle Scholar
  11. JOHNSON, R.W., DAANE, A.H.: The lanthanum-boron system. J. Phys. Chem. 65, 909–915 (1961)CrossRefGoogle Scholar
  12. JOHNSON, R.W., DAANE, A.H.: Electron requirements of bonds in metal borides. J. Chem. Phys. 38, 425–432 (1963)CrossRefGoogle Scholar
  13. JURETSCHKE, H.J., STEINITZ, R.: Hall effect and electrical conductivity of transition metal diborides. J. Phys. Chem. Solids. 4, 118–127 (1958)CrossRefGoogle Scholar
  14. KUDINT’SEVA, G.A., TSAREV, B.M.: Radistkh. Elektron 3, 428 (1958)Google Scholar
  15. LAPLACA, S.: Meet. Amer. Cryst. Assoc. Suffern (N.Y.) Feb. 1965Google Scholar
  16. LENK, R.: Czech. J. Phys. 6, 625 (1956)CrossRefGoogle Scholar
  17. LEVISON, K.A., PERKINS, P.G.: unpublishedGoogle Scholar
  18. LIPSCOMB, W.N., BRITTON, D.: Valence structure of the higher borides. J. Chem. Phys. 33, 275–280 (1960)CrossRefGoogle Scholar
  19. LONGUET-HIGGINS, H.C., ROBERTS, M.D.: The electronic structure of the borides MB6. Proc. Roy. Soc. 224, 336–347 (1954)CrossRefGoogle Scholar
  20. LYAKOVSKAYA, I.I., ZIMKINA, T.M., FOMICHEV, V.A.: Boron K spectra from transition metal diborides and LaB6, BaB6 and AsB compounds. Sov. Phys. Solid State 12, 138–143 (1970)Google Scholar
  21. McALOON, B.J., PERKINS, P.G.: Semiempirical LCAOMO theory for infinite systems. J. Chem. Soc. Faraday Trans. II 68, 1121–1126 (1972)Google Scholar
  22. MERCURIO, J.P., ETOURNEAU, J., NASLAIN, R., HAGENMULLER, P., GOODENOUGH, J.B.: J. Solid State Chem. 9, 37 (1974)CrossRefGoogle Scholar
  23. MIKHAILOVS’KII, B.I.: Ukr. Fiz. Zhur. 7, 75 (1962)Google Scholar
  24. MUETTERTIES, E.L.: The chemistry of boron and its compounds. New York: Wiley and Sons, 1967Google Scholar
  25. MYRON, H.W., LIU, S.H.: Energy bands for FCC La and Pr. Phys. Rev. B1, 2414–2417 (1970)Google Scholar
  26. PADERNO, Y.B., SAMSONOV, G.V.: Dokl. Akad. Nauk. SSSR 137, 646 (1960)Google Scholar
  27. PEARSON, W.B.: Handbook of lattice spacings and structures for metals and alloys. New York: Pergamon Press, 1958Google Scholar
  28. PERKINS, P.G., WALL, D.H.: Self-consistent molecular orbital calculations on aminoboranes. J. Chem. Soc., 1207–1211 (1966)Google Scholar
  29. SAMSONOV, G.V., GRODSTEIN, A.E.: Zhur. Fiz. Khim. 30, 379 (1956)Google Scholar
  30. STEWART, J.J.P.: personal communicationGoogle Scholar
  31. THOMPSON, R.: The chemistry of metal borides and related compounds. In: Progress in Boron Chemistry. New York: Pergamon Press 2, 173–230 (1970)Google Scholar
  32. WESTBROOK, J.H.: Proc. Int. Symp. High Temp. Technol. New York: McGraw Hill, 1960Google Scholar
  33. YAMAZAKI, M.: Group theoretical treatment of the energy bands in metal borides. J. Phys. Soc. Japan 12, 1–6 (1957)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • P. G. Perkins

There are no affiliations available

Personalised recommendations