Advertisement

The Proton Pump of the Mitochondrial Respiratory Chain

  • S. Papa
  • F. Guerrieri
  • M. Lorusso
  • G. Izzo
  • D. Boffoli
  • F. Capuano
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Fifteen years after Mitchell (1961) first proposed the chemiosmotic hypothesis of oxidative phosphorylation, it has been experimentally established that redox chains and ATPase complexes of energy-transducing membranes directly convert metabolic energy into a transmembrane thermodynamic potential difference of protons (for review, see: Mitchell, 1972; Papa, 1976). The mechanism of the redox and the hydrolytic pumps and their role in ATP formation remain, however, yet to be understood (Papa, 1976).

Keywords

Electron Flow Proton Translocation Proton Release Submitochondrial Particle Secondary Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albracht, S.P.J., Slater, E.C.: EPR studies at 20°K on the mitochondrial respiratory chain. Biochim. Biophys. Acta 245, 503–507 (1971)PubMedCrossRefGoogle Scholar
  2. Baum, H., Rieske, J.S., Silman, H.I., Lipton, S.H.: On the mechanism of electron transfer in complex III of the electron transfer chain. Proc. Natl Acad. Sci. U.S. 57, 798–805 (1967)CrossRefGoogle Scholar
  3. Brand, M.D., Reynafarje, B., Lehninger, A.L.: The stoichiometry, relationship between energy-dependent proton ejection and electron transport in mitochondria. Proc. Natl. Acad. Sci. U.S. 73, 1–18 (1976)CrossRefGoogle Scholar
  4. Chance, B.: The nature of electron transfer and energy coupling reactions. FEBS Lett. 23, 3–20 (1972)PubMedCrossRefGoogle Scholar
  5. Clark, W.M.: Oxidation-Reduction Potentials of Organic Systems. Baltimore Md.: Waverley Press, 1960Google Scholar
  6. Das Gupta, U., Rieske, J.S.: Identification of a protein component of the antimycin-binding site of the respiratory chain by photoaffinity labeling. Biochem. Biophys. Res. Commun. 54, 1247–1254 (1973)PubMedCrossRefGoogle Scholar
  7. Douglas, M.G., Cockrell, R.S.: Mitochondrial cation-hydrogen ion exchange -Sodium selective transport by mitochondria and submitochondrial particles J. Biol. Chem. 249, 5464–5471 (1974)PubMedGoogle Scholar
  8. Dutton, P.L., Wilson, D.F.: Redox potentiometry in mitochondrial and photosynthetic bioenergetics. Biochim. Biophys. Acta 346, 165–212 (1974)PubMedGoogle Scholar
  9. Gellerfors, P., Nelson, B.D.: Analysis of the peptide composition of purified beef-heart complex III by dodecylsulfate electrophoresis. Europ. J. Biochem. 52, 433–443 (1975)PubMedCrossRefGoogle Scholar
  10. Green, D.E., Järnefelt, J., Tisdale, H.D.: Studies on the electron transport system. XIV. The isolation and properties of soluble cytochromec. Biochim. Biophys. Acta 31, 34–46 (1959)PubMedCrossRefGoogle Scholar
  11. Guerrieri, F., Nelson, B.D.: Studies on the characteristics of a proton pump in phospholipid vesicles inlayed with purified complex III from beef-heart mitochondria. FEBS Lett. 54, 339–342 (1975)PubMedCrossRefGoogle Scholar
  12. Hinkle, P.C., Kim, J.J.: Chemiosmotic coupling in cytochrome oxidase vesicles. In: Mechanisms in Bioenergetics. Azzone, G.F., Ernster, L., Papa, S., Quagliariello, E., Siliprandi, N. (eds.). London: Academic Press, 1973; pp. 53–60Google Scholar
  13. Jencks, W.P.: Catalysts in Chemistry and Enzymology. New York: McGraw Hill, 1969, pp. 243–281Google Scholar
  14. Kilmartin, J.V., Rossi-Bernardi, L.: Interaction of hemoglobin with hydrogen ions, carbon dioxide and organic phosphates. Physiol. Rev. 53, 836–889 (1973)PubMedGoogle Scholar
  15. Klingenberg, M.: The respiratory chain. In: Biological Oxidation. Singer, P.T. (ed.). New York: Interscience (1968), pp. 1–49Google Scholar
  16. Lawford, H.G., Garland, P.B.: Proton translocation coupled to quinol oxidation in ox-heart mitochondria. Biochem J. 136, 711–720 (1973)PubMedGoogle Scholar
  17. Mitchell, P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191, 144–148 (1961)CrossRefGoogle Scholar
  18. Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445 (1966)PubMedCrossRefGoogle Scholar
  19. Mitchell, P.: Structural and functional organisation of energy-transducing membranes and their ion-conducting properties. In: Mitochondria/Biomembranes. In: Proc. 8th FEBS Meeting, Amsterdam. Van Den Bergh, S.G., Borst, P., Van Deenen, L.L.M., Reimersma, J.C., Slater, E.C., Tager, J.M. (eds.). Amsterdam: North Holland-American Elsevier, 1972, Vol. XXVIII, pp. 353–370Google Scholar
  20. Mitchell, P.: Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: Protonmotive ubiquinone cycle. FEBS Lett. 56, 1–6 (1975a)PubMedCrossRefGoogle Scholar
  21. Mitchell, P.: Protonmotive function of cytochrome systems. In: Electron Transfer Chains and Oxidative Phosphorylation. Quagliariello, E., Papa, S., Palmieri, F., Slater, E.C., Siliprandi, N. (eds.). Amsterdam: North Holland, Publ. Co., 1975b, pp. 305–327Google Scholar
  22. Mitchell, P., Moyle, J.: Respiration-driven proton translocation in rat liver mitochondria. Biochem. J. 105, 1147–1162 (1967)PubMedGoogle Scholar
  23. Mitchell, P., Moyle, J.: The intrinsic anisotropy of the cytochrome oxidase region of the mitochondrial respiratory chain and the consequent vectorial property of respiration. In: Electron Transport and Energy Conservation. Tager, J.M., Papa, S., Quagliariello, E., Slater, E.C. (eds.). Bari: Adriatica Editrice, 1970, pp. 575–587Google Scholar
  24. Nicholls, P., Chance, B.: Cytochromec oxidase. In: Molecular Mechanisms of Oxygen Activation. Hayaishi, O. (ed.). New York: Academic Press, 1974, pp. 479–534Google Scholar
  25. Nishibayashi-Yamashita, H., Cunningham, C., Racker, E.: Resolution and Reconstitution of the Mitochondrial Electron Transport System. III. Order of reconstitution and requirement for a new factor for respiration. J. Biol. Chem. 247, 698–704 (1972)Google Scholar
  26. Ohnishi, T., Wilson, D.F., Asakura, T., Chance, B.: Studies on iron-sulfur proteins in the site I region of the respiratory chain in pigeon heart mitochondria and submitochondrial particles. Biochem. Biophys. Res. Commun. 46, 1631–1638 (1972)PubMedCrossRefGoogle Scholar
  27. Papa, S.: Coupling mechanism in ion translocation across the inner mitochondrial membrane. In: Energy Transduction in Respiration and Photosynthesis. Quagliariello, E., Papa, S., Rossi, C.S. (eds.). Bari: Adriatica Editrice, 1971, pp. 173–203Google Scholar
  28. Papa, S., Proton translocation reactions in the respiratory chains. Biochim. Biophys. Acta 456, 39–84 (1976)PubMedGoogle Scholar
  29. Papa, S., Guerrieri, F., Lorusso, M., Simone, S.: Proton translocation and energy transduction in mitochondria. Biochimie 55, 703–716 (1973)PubMedCrossRefGoogle Scholar
  30. Papa, S., Guerrieri, F., Lorusso, M.: Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated to oxido-reductions of the oxygen-terminal respiratory carriers. Biochim. Biophys. Acta 357, 181–192 (1974a)PubMedCrossRefGoogle Scholar
  31. Papa, S., Guerrieri, F., Lorusso, M.: The role of respiratory carriers in the mitochondrial proton pump. In: Membrane Proteins in Transport and Phosphorylation. Azzone, G.F., Klingenberg, M.E., Quagliariello, E., Siliprandi, N. (eds.). Amsterdam: North Holland, Publ. Co., 1974b, pp. 177–186Google Scholar
  32. Papa, S., Guerrieri, F., Lorusso, M.: On the mechanism of the mitochondrial proton pump. In: Dynamics of Energy-Transducing Membranes. Ernster, L., Estabrock, R.W., Slater, E.C. (eds.). Amsterdam: Elsevier, 1974c, pp. 417–432Google Scholar
  33. Papa, S., Guerrieri, F., Capuano, F., Izzo, G., Boffoli, D.: On the stoichiometry of the mitochondrial redox-proton pump. 1976, to be submittedGoogle Scholar
  34. Papa, S., Lorusso, M., Guerrieri, F.: Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol. Biochim. Biophys. Acta 387, 425–440 (1975a)PubMedCrossRefGoogle Scholar
  35. Papa, S., Lorusso, M., Guerrieri, F. Izzo, G.: On the mechanism of electron flow and proton translocation in the ubiquinone-cytochromec span of the respiratory chain. In: Electron Transfer Chains and Oxidative Phosphorylation. Quagliariello, E., Papa, S., Palmieri, F., Slater, E.C., Siliprandi, N. (eds.). Amsterdam: Elsevier, 1975b, pp. 317–327Google Scholar
  36. Pettigrew, G.W., Meyer, T.E., Bartsch, R.G., Kamen, M.D.: pH dependence of the oxidation-reduction potential of cytochrome C2. Biochim. Biophys. Acta 430, 197–208 (1975)Google Scholar
  37. Rodkey, F.L., Ball, E.G.: Oxidation-reduction potentials of the cytochrome c system. Arch. Biochem. 12, 17–28 (1949)Google Scholar
  38. Seki, S., Oda, T.: Studies on cytochrome oxidase. II Ultrastructure of cytochrome oxidase. Arch. Biochem. Biophys. 138, 122–134 (1970)PubMedCrossRefGoogle Scholar
  39. Slater, E.C.: Electron transfer and energy conservation. In: Dynamics of Energy-Transducing Membranes. Ernster, L., Estabrock, R.W., Slater, E.C. (eds.). Amsterdam: Elsevier 1974, pp. 1–20Google Scholar
  40. Straub, J.P., Colpa-Boonstra, J.P.: The effect of pH on the oxidation-reduction potential of cytochrome b in heart muscle preparations. Biochim. Biophys. Acta 60, 650–652 (1962)PubMedCrossRefGoogle Scholar
  41. Urban, P.F., Klingenberg, M.: On the redox potentials of ubiquinone and cytochrome b in the respiratory chain. Europ. J. Biochem. 9, 519–525 (1969)PubMedCrossRefGoogle Scholar
  42. Vanderkooi, G., Senior, A.E., Capaldi, R.A., Hayashi, H.: Biological membrane structure. III. The Lattice structure of membranous cytochrome oxidase. Biochim. Biophys. Acta 274, 38–48 (1972)PubMedCrossRefGoogle Scholar
  43. Vernon, L.P., Kamen, M.D.: Hematin compounds in photosynthetic bacteria. J. Biol. Chem. 211, 643–675 (1954)PubMedGoogle Scholar
  44. Wikström, M.K.F.: Energy linked change in the redox state and absorption spectrum of cytochrome a in situ. Biochim. Biophys. Acta 283, 385–390 (1972)PubMedCrossRefGoogle Scholar
  45. Wyman, J.: Regulation in macromolecules as illustrated by haemoglobin. Quart. Rev. Biophys. 1, 35–81 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • S. Papa
  • F. Guerrieri
  • M. Lorusso
  • G. Izzo
  • D. Boffoli
  • F. Capuano

There are no affiliations available

Personalised recommendations